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Plan of Presentation
 Motivation and main problems
 Single-view calibration procedures
 Projective reconstruction and calibration

 Obtaining camera matrices from F
 Bundle adjustment

 Auto-calibration + Metric reconstruction
 Stereo correspondence literature survey



Main problem 1

Hottest problem in Hartley's Book:
 Given corresponding features across 

multiple uncalibrated views, guess: 
 Camera motion and internal parameters
 Metric reconstruction
 Deal with noise, mismatches, and outliers



Main problem 2

Another hot (and harder) problem
 Determine correspondences between 

multiple views
 Views may be totally uncalibrated
 Or camera structure may be known

 Fundamental matrix
 Or even full calibration



Problem solving

Correspondences • Multiple view relations,
• Camera Motion (Calibration) 
• 3D Structure (Reconstruction)

Relatively well 
understood

Most challenging



Reconstruction Process

Interest points Correspondences

“Broad” MV relations:
Fundamental matrix, etc

Initial reconstructionBundle adjustment

Auto-calibration

Refine reconstruction
and camera matrices

by non-linear optimization Gross Projective reconstruction 
using linear methods

Metric reconstruction
and intrisic calibration
given enough images



2D Projective transforms

Planar Projective transformation

Any invertible linear map on homogeneous coordinates

projectivity=collineation=projective transformation=homography
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Groups of transforms
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The line at infinity l is a fixed line under a projective transformation H 
if and only if H is an affinity



Affine rectification
v1 v2

l1

l2 l4

l3

l∞

Removal of 
projective component

of transformation



The circular points
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The circular points I, J are fixed points under the projective 
transformation H iff H is a similarity

Eigenvalues of similarities



Conic dual to circular points
 Conic = 2nd degree homog. eq.

 3 x 3 symmetric matrix
 Dual conics = line conics:

 Conic dual to circular points I, J

 All lines through I or J.

0xx CT

0ll * CT 1* CC

TT JIIJ* C

The dual conic        is fixed conic under the 
projective transformation H iff H is a similarity

*
C

Packages both circular points and  l∞  (null vector)



Conic dual to circular points

      Packs both circular points and l∞  (null vector) 
 Represents information needed for 

determining structure up to similarity
 Enables measurement of angles
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Metric rectification

From affinity

From projectivity



3D Projective transforms

XX' H

3D projective transformation

Any invertible 4x4 linear map on homogeneous coordinates

Dual: points ↔ planes, lines ↔ lines 



3D Projective transforms
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3D Projective transforms

The plane at infinity π is a fixed plane under a 
projective transformation H iff H is an affinity

1. canical position
2. contains directions 
3. two planes are parallel  line of intersection in π∞

4. line // line (or plane)  point of intersection in π∞

5. Identifying π∞ enables removal of projective “distortion”

  T1,0,0,0π 

  T0,,,D 321 XXX



The Absolute conic

 Ω∞  is a conic with matrix I on π

The absolute conic Ω∞ is a fixed conic under the projective 
transformation H iff H is a similarity
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only imaginary points at infinity   (!)

 Encodes 5 DOF of affine transformation
 Identifying it enables removal of affine distortion



The Absolute conic
 Ω∞  enables measuring angles

 Orthogonality:
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The Absolute Dual Quadric

 Quadrics
 Surfaces in P^3 defined by

 Dual quadrics
 Equation on (tangent) planes

(Q : 4x4 symmetric matrix)0QXX T

1. 9 DOF (9 points define quadric)

2. (plane ∩ quadric) = conic

0πQπ * T

-1* QQ 1.                    (non-degenerate)



The Absolute Dual Quadric
 Absolute dual quadric Q*

∞

 Set of tangent planes to absolute conic
 Encodes both π and Ω∞

 8 D.O.F.  specifying projective and affine 
transforms, leaving only similarity

The absolute dual quadric Q*
∞ is a fixed quadric under the 

projective transformation H iff H is a similarity



Estimation of 
multiview mappings

 2D homography
Given a set of (xi,xi’), compute H (xi’=Hxi)

 3D to 2D camera projection
Given a set of (Xi,xi), compute P (xi=PXi)

 Fundamental matrix
Given a set of (xi,xi’), compute F (xi’TFxi=0)

  



2D Homography estimation
 4 point correspondences determine H
 In practice, there is error, so use many 

correspondences
 Minimize cost functions

 Direct Linear Transformation
 Least-squares (SVD) solution:   Ah ~ 0
 Minizes an algebraic residual, can be biased
 Requires normalization of data
 Advantage: fast, unique solution
 Initial solution for iterative methods



2D Homography estimation
 Geometric cost function minimization
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 Use Levenberg-Marquadt iteration in VXL
 DLT as initial solution



2D Homography estimation

Objective
Automatically compute homography between two images

Algorithm

(iv) Interest points: Compute interest points in each image

(v) Putative correspondences: Compute a set of interest point 
matches based on some similarity measure

(vi) RANSAC robust estimation:Choose H with most inliers 

(vii) Optimal estimation: re-estimate H from all inliers by 
minimizing geom. cost function with Levenberg-Marquardt

(viii)Guided matching: Determine more matches using 
prediction by computed H

Optionally iterate last two steps until stability



2D Homography estimation
Interest points
(500/image)

Putative 
correspondences (268)

Outliers (117)

Inliers (151)

Final inliers (262)



Basic camera calibration
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 3x4 general homog. matrix, 11 DOF
 Minimum 6 3D to 2D point correspondences

 Again, use DLT for minimizing

0Ap 

Ap
           



Basic camera calibration

 Levenberg-Marquadt for minimizing geometric error
 Assuming high precision in 3D
 Geometric error:

           
 Distortion correction...



More about internal calibration

 Image of the absolute conic (IAC)
 By projecting Ω∞, one arrives at:

  
 Its dual (DIAC): * = KKT

 Independent of camera position or orientation!
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A simple calibration device

(i) compute H for each square 
(corners  (0,0),(1,0),(0,1),(1,1))

(iii) compute the imaged circular points H(1,±i,0)T

(iv) fit a conic to 6 circular points
(v) compute K from  

(= Zhang’s calibration method)



Other constraints on K

 We may combine many different linear constraints on 
the IAC and then fit the conic and recover K 

 Examples of scene constraints:
 Planar homographies, as just seen
 Vanishing points corresponding to orthogonal lines

 Examples of internal constraints
 Zero skew and square pixels

 All these constraints are interpreted as known points 
lying on the conic or conjugate to it



The fundamental matrix

 

 F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0 
for all x↔x’

 F has 7 d.o.f. 
 3x3-1(homogeneous) – 1(rank2)
 7-point correspondences minimum
 Pair of camera matrices determine F uniquely
 F determines camera matrices up to projective 

ambiguity

  ]λe'|ve'F][[e'P'   0]|[IP T 



Reconstruction from 
2 uncalibrated views

 

 given xi↔x‘i , compute P,P‘ and Xi

ii PXx  ii XPx  for all i

 Without additional information, possible up to 
projective ambiguity

(i) Compute F from correspondences
(ii) Compute camera matrices from F
(iii) Compute 3D point for each pair of 

corresponding points (triangulation)



Reconstruction from 
2 uncalibrated views

 Projective reconstruction from F



Reconstruction from 
2 uncalibrated views

 Ultimate goal: metric reconstruction
 Only similarity ambiguity



Stratified reconstruction

(i) Projective reconstruction
(ii) Affine reconstruction
(iii)Metric reconstruction

Hardest



Projective to affine

 Identify π (3 points) using additional information
 Translational camera motion

 Scene constraints (similar to planar case)

  ]e'[]e[F 0]|[IP 
]e'|[IP 



Affine to metric

 Identify absolute conic Ω∞ 

 Then apply 3D “rectification” that maps it to 
canonical coordinates in Euclidean world,



 In practice, just find IAC  in some image 
 Single view constraints as seen before:

 Planar homographies
 Vanishing points corresponding to orthogonal lines
 Zero skew and square pixels

  on π ,0: 222 ZYX



Affine to metric

 Multiple view constraints on Ω∞

 Idea used in auto-calibration

 Consider same intrinsics/same  on all cameras
 Given sufficient images there is in general only one 

conic that projects to the same  in all images: 
 The absolute conic Ω∞

 Direct metric reconstruction
 Ground control points (5 or more)



Bundle adjustment

 Given n correspondences across m views
 Determine camera matrices and refine 

correspondences
 minimize reprojection error

 Levenberg-Marquadt
 Needs specialized implementation (Matt)

 Used to refine reconstructions in many occasions
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Bundle adjustment

 To many images or correspondences
 Strategies so that not all images are optimized 

simultaneously
 Partition data, bundle adjust separately, then merge

 Computation of initial structure and motion
 According to Hartley and Zisserman:

 “this area is still to some extend a black-art”
 Correspondences not present in all views

 Use overlapping subsequences
 Stitch into final reconstruction
 Triangulate to transfer correspondences to all views



Auto-Calibration

 Metric reconstruction and intrinsics
 All we need are:

 correspondences 
 sufficient number of views
 assumptions on internal calibration or camera motion

 We want to find rectifying 3D homography H

 H is completely determined by Ω∞ and π

 Or absolute dual quadric Q*
∞

 K of 1st camera and π suffices: 8 parameters



Auto-Calibration

 Special imaging conditions that constrains K
 Camera rotating about center
 Turntable motion

 Internal constraints
 Zero skew, fixed focal length, etc

 Strategy based on absolute dual quadric
 Q*

∞ is a fixed quadric under Euclidean transformations

 DIAC *i = K
i
K

i
T  is its image on each view

 So we have a relation between calibrations on each view



Auto-Calibration

 Old method based on Kruppa equations
 Constraint based on correspondences of epipolar lines 

tangent to the IAC
 Useful when only 2 views available

 Stratified strategy
 Identify π and then K

  π is the hardest part
 General motion and constant parameters
 Other ways as seen before

 Translational motion
 3 vanishing points, etc



Auto-Calibration


