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Camera Pose Estimation Using First-Order
Curve Differential Geometry

Ricardo Fabbri, Peter Giblin and Benjamin Kimia

Abstract—This paper considers and solves the problem of estimating camera pose given a pair of point-tangent correspondences
between a 3D scene and a projected image. The problem arises when considering curve geometry as the basis of forming
correspondences, computation of structure and calibration, which in its simplest form is a point augmented with the curve tangent. We
show that while the resectioning problem is solved with a minimum of three points given the intrinsic parameters, when points are
augmented with tangent information only two points are required, leading to substantial robustness and computational savings, e.g., as
a minimal engine within RANSAC. In addition, algorithms are developed to find a practical solution shown to effectively recover camera
pose using synthetic and real datasets. This technology is intended as a building block of curve-based structure from motion systems,
allowing new views to be incrementally registered to a core set of views for which relative pose has been computed.

Index Terms—Pose Estimation, Camera Resectioning, Differential Geometry

F

1 INTRODUCTION

A KEY problem in the reconstruction of structure from multiple
views is the estimation of relative pose and intrinsic param-

eters among several cameras. The classical approach relies on cor-
responding points to incrementally determine parameters of each
camera relative to initial pairs of relative pose solutions [1]. The
correspondences can be determined from isolated keypoints such
as SIFT [2] which remain somewhat stable over view and other
variations. As long as there is a sufficient number of keypoints
between two views, a random selection of a few correspondences
using RANSAC [3] verified by the number of consistent features
allow bootstrapping the reconstruction. This class of point-based
methods is currently popular through packages such as Open-
MVG, Bundler, and Colmap, large-scale 3D reconstuction [4], [5],
[6], [6], [7], and Augmented Reality. However, drawbacks limit the
applicability of keypoints, also noted in mainstream systems [8].

The correlation of interest points works under limited base-
line [9], Fig. 1(a), while image curve fragments as underlying
sharp ridges and reflectance curves persist stably over a much
larger range of views. Moreover, keypoint technology depends on
an abundance of features that survive the variations between views.
While this is true in many scenes, in a non-trivial number of cases
this is not, such as (i) Homogeneous regions, e.g., from man-
made objects [10], corridors, and cars [11], Fig. 1(b); (ii) Multiple
moving objects require their own set of features which may not be
sufficiently abundant without enough texture, Fig. 1(c); (iii) Non-
rigid objects require a rich set of features per patch, Fig. 1(d). In
all these cases there is often sufficient image curve structure,
motivating a parallel technology employing image curves.

The use of image curves for auto-calibration (in the broad
sense) can complement keypoint systems, but faces challenges that
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(a) (c)
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Fig. 1. (a) Widely separated views may not have enough key-
points in common, but share curve structure. (b) There may not
be sufficient keypoints matching views of homogeneous objects
such as a sculpture, but there is sufficient curve structure. (c)
Each moving object requires its own set of features, demanding
rich texture. (d) Non-rigid scenes face the same issue.

motivate the use of small curve fragments. First, edge linking does
not generally produce results which persist stably across images,
so that a curve in one view may become broken or grouped with
other curve fragments, and while the underlying curve geometry
correlates well across views, the individual curve fragments do
not, Fig. 2(a-h). Second, even when curve fragments correspond,
there is an intra-curve correspondence ambiguity, Fig. 2(i).

The paradigm explored in this paper is that small curve frag-
ments, or points augmented with differential-geometric attributes,
can be used as the basic image structure to correlate across views
and perform structure from motion (SfM) [12], [13], [14], [15],
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(a)

Fig. 2. Challenges in using curve fragments in multiview geometry: (a)
instability with changes in viewpoint (b), zoom (c-h): a curve in one
view broken in another, or linked to background, or becomes absent;
a fragmentation at junctions gets linked in another view; different parts
occluded in different views, and undergoing deformation from one view
to the other. (i) Correspondence ambiguity along the curve.

Fig. 3. Determining camera pose R, T given space curves in a world
coordinate system and their projections in an image coordinate system
(left); and an approach consisting of determining pose given 3D point-
tangents (local curve models) their projections (right).

[16], [17], [18]. Recent work [19], [20], [21] has shown that
tangent, curvature, and the sign of curvature derivative can be
reliably estimated. The value of this geometry is in correlating
structure across three frames or more since the correspondence
in two views is unconstrained. The differential geometry at two
corresponding points in two views reconstruct the differential
geometry of the space curve they arise from (possibly up to
unknown parameters) and this constrains the differential geometry
of corresponding curves in a third view [22], [23].

This paper explores the use of first-order differential geometry,
namely points with tangent attributes, for determining the pose of
a single camera. It proposes and solves the following:
Problem (P2PT) For a camera with known intrinsic parameters,
how many corresponding pairs of point-tangents in 3D space
specified in world coordinates, and point-tangents in 2D specified
in image coordinates, are required to establish the pose of the
camera with respect to the world coordinates, Fig. 3?

In principle, each 3D-2D correspondence yields three con-
straints in that projected coordinates x, y and direction must match
the image measurements. Therefore, two correspondences should
be necessary, and – generally – are sufficient for determining the

6 degrees of freedom of the pose. In this paper, we show that this
is indeed true and provide a reference solver. Since the classical
problem of determining camera pose from n 2D-3D correspon-
dences is called Perspective-n-Point problem (PnP) – most notably
P3P – we henceforth refer to the aforementioned problem as the
P2PT problem, i.e., Perspective-two-point-tangents.

The solution to P2PT is useful under several scenarios. In SfM,
many views of the scene are to be reconstructed starting from
an initial curve and/or oriented keypoint reconstruction available
from two or three initial views [12], [13]. A curve can be obtained
by edge detection and represented as a vector field of subpixel
edgels, and keypoints can be corners, junctions, or SIFT points
with the attributed dominant orientation, which have confirmed to
be reliable for pose estimation since the suggestion from our initial
work [24], [25]. A pair of point-tangents in the reconstruction can
be matched with RANSAC to a pair of point-tangents in each new
new image to be integrated to the initial reconstruction.

The advantage compared to using three correspondences from
unorganized point reconstruction and P3P is that: (i) there are
fewer edges than surface points (for a fixed discretization); (ii)
the use of two rather than three points in RANSAC, requiring
less than half the typical number of runs for the same level of
robustness, e.g., 32 vs. 70 runs to achieve 99.99% chance of
hitting inlier correspondences in at least one run, assuming 50%
outliers – though production systems often require as many runs
as possible to maximize robustness. For the same number of runs
N , P3P will fail orders of magnitude more often than P2PT, more
so as N grows up to 100-1000, not uncommon in end-user systems
requiring extreme robustness. This relative gap in robustness may
be expressed as P3P having (1 − 0.53)N /(1 − 0.52)N ≈ 1.67N

times more failures per RANSAC solve than P2PT, where the
numerator and denominator are the failure rates by hitting outliers
for P3P and P2PT, resp [1]. Many more runs than the theoretical
minimum are used in real systems, compounded for many views
and datasets; and in fact the rate of outliers may be higher than
expected, so this advantage accentuates.

Other useful scenarios for P2PT are: When a 3D model of an
object is available from CAD or other sources, e.g., vehicles, so
a strategy similar to the first scenario to register new views can
be used; In stereo video from calibrated binocular cameras, the
reconstruction from one frame can be used to determine the pose
in subsequent frames; When the extrinsic calibration of camera
systems in indoor man-made scenes lacks reliable well-distributed
points for P3P and bundle adjustment, e.g., for precise metrology
applications and in Augmented Reality where robustness is prime.
The few available points are often at corners where long reliable
lines meet; using tangents makes the most of scant data.

2 RELATED WORK

Leveraging image curves for camera pose has generally relied
on matching epipolar tangencies on closed curves. Corresponding
points γ1 in image 1 and γ2 in image 2 are related by γ2>Eγ1 = 0,
where E is the Essential matrix [26]; this can be extended to the
differential geometry of two parametrized curves γ1(s) and γ2(s),

γ1>(s)Eγ2(s) = 0, (2.1)

with unit tangents t1(s) and t2(s) related by differentiation

g1(s) t1
>

(s)Eγ2(s) + γ1>(s)Eg2(s) t2(s) = 0, (2.2)
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a

b

Fig. 4. Epipolar tangencies in curve-based relative pose estimation. a An epipolar
line on the left must correspond to the epipolar line on the right having tangency on
the corresponding curve. This works for both static curves and occluding contours.
b Epipolar tangencies updated differentially through curvature.

where g1(s) and g2(s) are the respective speeds of parametrization
of the curves. When one of the tangents t1(s) is along the epipolar
plane, t1

>

(s)Eγ2(s) = 0, then γ1>(s)E t2(s) = 0. Thus, epipolar
tangency in image 1 implies tangency in image 2, Fig. 4.

When the epipolar tangency constraint was first proposed [27],
linked edges were employed with a coarse initial estimate of E to
find a sparse set of epipolar tangencies, including at corners, in
each view. They are manually matched between the views and
used refine the estimate E, Fig. 4b, by minimizing γ1>(s)Eγ2(s)
over all matches in an iterative two-step scheme: the correspond-
ing points are kept fixed and E is optimized in the first step and
then E is kept fixed and the points are updated in a second step
using a closed form solution based on an approximation of the
curve by the osculating circle. Closed curves were required.

The case of four corresponding conics in two views with un-
known intrinsic parameters has been considered [28]. Each conic
correspondence provides a pair of tangencies and two constraints,
so four pairs of conics are needed. If intrinsic parameters are avail-
able, then the absolute conic gives two constraints on the epipolar
geometry, so that only 3 conic correspondences are required.
This, however, was deemed sensitive. Kaminski and Shashua [29]
extended this to general algebraic curves in uncalibrated views, by
extending Kruppa’s equations to describe the epipolar constraint
of two projections of a general algebraic curve.

Sinha et. al. [30] considered multiple static cameras viewing a
moving object. Since the epipolar geometry between any pair of
cameras is fixed, each hypothesized pair of epipoles representing
a point in 4D is probed for a pair of epipolar tangencies across
the video. Specifically, two pairs of tangencies in one frame in
time and a single pair of tangencies in another frame provide
a constraint in that they must all intersect in the same point.
This allows for an estimation of epipolar geometry for each pair
of cameras, then optimized, providing intrinsic parameters and
relative pose. Well-segmentable silhouettes were required.

There have also been recent developments on trifocal rel-
ative pose estimation to help bootstrap curve-based SfM sys-
tems [24]. This provides constraints from tangents unavailable
in two views [22], but is relatively unexplored since it leads to
high degree problems. The aim of the present work is to advance
so-called “absolute” pose from curves, which despite the name
is typically used to find the pose of new views relative to the

frame of initial views that have been reconstructed by some other
method, such as a trifocal or two-view solver. Three 2D-3D
point correspondences are required to determine absolute pose [3],
[31], [32], known as P3P or the triangle pose problem. This is
an instance of the perspective n-point problem (PnP) [3], i.e.,
the recovery of camera pose from n corresponding 3D-2D point
pairs [33], or alternatively of depths [34], [35]. This can be seen as
an intrinsically-calibrated case of the broader procedure of camera
resectioning [1], [35], which in its general form assumes a camera
matrix to be estimated (so that the intrinsic parameters can vary
from solution to solution), and also related to camera calibration
with the purpose of obtaining the intrinsic parameter matrix Kim .
In this paper, we deem all these variants camera resectioning.

Camera resectioning for unknown intrinsic parameters can be
solved using six 3D–2D point correspondences when the intrinsic
parameters are unknown, or four point correspondences when
only the focal length is unknown, but all the other intrinsics are
known [36], [37], Table 1. We show that when intrinsic parameters
are known, only a pair of point-tangent correspondences are
required to estimate pose. Work citing the conference version of
this manuscript has since shown that 3 and 4 points, resp., are
required for the other two cases [37], Table 1. This represents
significant savings for a RANSAC computation. Notably, Kuang
and Åström have done work on a similar relaxed problem [37].
In their context, point-tangents can be framed as “quivers” (i.e.,
1-quivers), or features with attributed directions (such as SIFT),
but de-emphasizing the connection to tangents to general curves.
We note that point-tangent fields can also be seen as vector fields,
so that the results in this paper could potentially apply to surface-
induced correspondence fields, or other vector fields.

The direct solution to P3P, given in 1841 [31], equates the
sides of the triangle formed by the three points with those of the
vectors in the image, which gives a system of three quadratics
in three unknowns taken as the depths at each point. Following
traditional methods going back to the German mathematician
Grunert in 1841 [31] and later Finsterwalder in 1937 [32], by
factoring out one depth, this can be reduced to a system of two
quadratics in two unknowns – depth ratios of the second and
third points relative to the first. Grunert further reduced this to
a single quartic equation and Finsterwalder proposed an analytic
solution. The state of the art P3P solver has been proposed very
recently [38], reportedly achieving orders of magnitude advances
in stability and speed. In the next section, we show that only two
points are necessary and sufficient to recover camera pose,
when tangent measurements or lines passing through the points are
available. Similar to these seminal developments, we also reduce
the equations to depth unknowns.

3 DETERMINING CAMERA POSE FROM A PAIR OF
3D–2D POINT-TANGENT CORRESPONDENCES

Notation: Our notation follows our paper [22], which contains a
more practical and expressive version of the notation in the classic
book by Cipolla and Giblin [16]. Compared to the standard Hartley
and Zisserman book [1], the present notation has explicit scalings
such as depths, and allows a clear expression of a differential
theory (where limits of ratios are routinely considered), which
is useful for relating the results to general curves, surfaces and
singularity theory in the future. It fits within a larger curve-based
SfM framework described in [14]. We now review the basics of
this notation as to be self-contained. Consider a sequence of n
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Case Unknowns Min. # of Point Corresp. Min. # of Pt-Tgt Corresp.

Calibrated (Kim known) Camera pose R, T 3 2 (this paper)
Focal length unknown Pose R, T and f 4 3
Uncalibrated (Kim unknown) Camera model Kim, R, T 6 4

TABLE 1
The number of 3D–2D correspondences needed to solve for camera pose and intrinsic parameters.

3D points (Γw
1 , Γ

w
2 , . . . , Γ

w
n ), described in the world coordinate

system (hence the w superscript) and their corresponding projected
image points (γ1, γ2, . . . , γn ) described as points in the 3D camera
coordinate system as 3-vectors with third coordinate 1. We may
drop the subscript when an expression holds for any index. Let
the rotation R and translation T relate the camera and world
coordinate systems through

Γ = RΓw + T , (3.1)

where Γ and Γw are the coordinates of a point in the camera
and world coordinate systems, respectively. Let ρ1, ρ2, . . . , ρn be
depths defined by the projection equation

Γ = ργ. (3.2)

In general we assume that each point γi is a sample from an
image curve γi (si ) which is the projection of a space curve Γi (Si )
represented in the camera coordinate system, where si and Si are
arclengths along the image and space curves, resp. In terms of the
usual notation [1] based on a 3 × 4 camera matrix, we have

γim ∝ K imγ ∝ K imΓ ∝ K im · [R | T ]
[
Γw

1

]
, (3.3)

where γim is a point in pixel image coordinates, K im is the 3 × 3
calibration matrix [1], and K im · [R | T ] the usual camera matrix.

We consider tangent measurements t1, t2, . . . , tn and their
corresponding 3D tangents Tw

1 ,T
w
2 , . . .T

w
n are given, and will

show that n = 2 is suffices. We take the 2D-3D point-tangents
as samples along 2D-3D curve neighborhoods, respectively, where
the speed of parametrization along the image curve neighborhoods
are gi and along the space curves Gi , i = 1, 2, . . . , n. Each
tangent can be taken as a unit vector obtained by differentiating
some paramatrization of the underlying curve: Tw = Γw′

‖Γw′ ‖
, and

t = γ′

‖γ′ ‖ , where prime “ ′” denotes differentiation with respect to
an arbitrary parameter, for all i. Note that since γ’s have third
coordinate 1, the tangent vectors t’s have third coordinate zero.
These tangents can also be seen as infinite lines going through the
points Γw

i and γi , although we also exploit orientation constraints.
For completeness, we recall certain multiview relations regard-

ing tangent vectors [22]. The tangent vector in camera coordinates
is T = RTw , a consequence of differentiating Eq. 3.1 with respect
to an arbitrary curve parameter and the fact that R is length-
preserving. Corresponding 3D-2D tangents t and Tw are related
by also differentiating the projection Equation 3.2 with respect to
a common (synchronized) curve parameter

GT = GRTw = ρ′γ + ρgt, (3.4)

where ρ′ is the depth derivative with respect to such parameter. In
particular, this common parameter can often be taken as the arc
length of the space curve G = 1 or of the image curve g = 1. This

equation states that T , t , and γ are coplanar and is central to the
present paper. From this, 3D tangents can be projected T −→ t,

t =
T − Tzγ

‖T − Tzγ‖
, (3.5)

and reconstructed from 2D tangents t observed in two views [22,
equation 4.11].

Theorem 3.1. Given a pair of 3D point-tangents
{(Γw

1 ,T
w
1 ), (Γw

2 ,T
w
2 )} described in a world coordinate system

and their corresponding perspective projections, the 2D point-
tangents (γ1, t1), (γ2, t2), the pose of the camera R, T relative
to the world coordinate system defined by Γ = RΓw + T can
be solved up to a finite number of solutions (assuming that the
intrinsic parameters Kim are known), by solving the system




γ>1 γ1 ρ
2
1 − 2γ>1 γ2 ρ1ρ2 + γ

>
2 γ2 ρ

2
2 = ‖Γ

w
1 − Γw

2 ‖
2,

Q(ρ1, ρ2) = 0,
(3.6)

where RΓw
1 + T = Γ1 = ρ1γ1 and RΓw

2 + T = Γ2 = ρ2γ2, and
Q(ρ1, ρ2) is an eight degree polynomial. This then solves for R
and T as




R =
[
(Γw

1 − Γw
2 ) Tw

1 Tw
2

]−1
·

[
ρ1γ1 − ρ2γ2 ρ1

g1
G1

t1 +
ρ′1
G1
γ1 ρ2

g2
G2

t2 +
ρ′2
G2
γ2

]

T = ρ1γ1 −RΓ
w
1 ,

where expressions for four auxiliary variables g1
G1

and g2
G2

, the
ratio of speeds in the image and along the tangents, and ρ1 and
ρ2 are available.

Proof. The proof proceeds by (i) writing the projection equations
for each point and its derivatives in the simplest form involving
R, T , depths ρ1 and ρ2, depth derivatives ρ′1 and ρ′2, and speed
of parametrizations G1 and G2, respectively; (ii) eliminating the
translation T by subtracting point equations; (iii) eliminating R
using dot products among equations. This gives six equations
in six unknowns: (ρ1, ρ2, ρ1

g1
G1
, ρ2

g2
G2
,
ρ′1
G1
,
ρ′2
G2

); (iv) eliminating
the unknowns ρ′1 and ρ′2 gives four quadratic equations in four
unknowns: (ρ1, ρ2, ρ1

g1
G1
, ρ2

g2
G2

). Three of these quadratics can be
written in the form:




Ax2
1 + Bx1 + C = 0

Ex2
2 + Fx2 + G = 0

H + Jx1 + K x2 + Lx1x2 = 0,

(3.7)

(3.8)

(3.9)

where x1 = ρ1
g1
G1

and x2 = ρ2
g2
G2

and where A through L are only
functions of the two unknowns ρ1 and ρ2. Now, Eq. 3.9 represents
a rectangular hyperbola, Fig. 5, while Eqs. 3.7 and 3.8 vertical and
horizontal lines in the (x1, x2) space. Fig. 5 illustrates that only
one solution is possible which is then analytically written in terms
of variables A–L (not shown here). This allows expressing ρ1

g1
G1

and ρ2
g2
G2

in terms of ρ1 and ρ2 – a degree 16 polynomial – but
this is in fact divisible by ρ4

1ρ
4
2, leaving a polynomial Q of degree
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Fig. 5. Diagram of the mutual intersection of Eqs. 3.7–3.9 in the x1–x2
plane.

8. Furthermore, we find that Q(−ρ1,−ρ2) = Q(ρ1, ρ2), using the
symmetry of the original equations. This, together with the unused
equation (the remaining one of four) gives the system 3.6. For
clarity, the details of the proof are completed at the end of this
section. �

Proposition 3.2. The algebraic solutions to the system (3.6) of
Theorem 3.1 are also required to satisfy the following inequalities
arising from imaging and other requirements enforced by

ρ1 > 0, ρ2 > 0 (3.10)
g1

G1
> 0,

g2

G2
> 0 (3.11)

det[ρ1γ1 − ρ2γ2 ρ1
g1
G1

t1 +
ρ′1
G1
γ1 ρ2

g2
G2

t2 +
ρ′2
G2
γ2]

det
[
Γw

1 − Γw
2 Tw

1 Tw
2

] > 0. (3.12)

Proof. There are multiple solutions for ρ1 and ρ2 in Eq. 3.6.
Observe that if ρ1, ρ2, R, T are a solution, then so are −ρ1,
−ρ2, −R, and −T . Only one of these two solutions are valid, as
the camera geometry enforces positive depth, ρ1 > 0 and ρ2 > 0;
solutions are sought only in the top right quadrant of the ρ1–ρ2
space. In fact, the imaging geometry further restricts the points to
lie in front of the camera.

Second, observe that the matrixR can only be a rotation matrix
if it has determinant +1 and is a reflection if it has determinant −1.
Using (3.7), det(R) can be written as

det R =
det

[
ρ1γ1 − ρ2γ2 ρ1

g1
G1

t1 +
ρ′1
G1
γ1 ρ2

g2
G2

t2 +
ρ′2
G2
γ2

]

det
[
Γw

1 − Γw
2 Tw

1 Tw
2

] .

Finally, the space curve tangent T and the image curve tangent
t must point in the same direction: T · t > 0, or g1

G1
> 0 and

g2
G2

> 0. This is because the parametrization we have assumed in
the space curve projects T to the same half plane as t in each view
so that T and t need to point in the same direction, i.e., T · t > 0,
or from Eqs. 3.23 and 3.24, g1

G1
> 0 and g2

G2
> 0. �

3.1 Completing the proof of Theorem 3.1

In the course of proving Theorem 3.1 in further detail, we will
also show that

Lemma 3.3. The polynomial Q(ρ1, ρ2) whose zero-locus de-
scribes the possible depths of given corresponding 3D point-
tangents and 2D point-tangents from (3.6) is given by

Q(ρ1, ρ2) =

A3 M2 + AC2 N2 − 2A2CM N

+ (BCN − ABM)(AP − BN ) + C(AP − BN )2 = 0

(3.13)

where the parameters A through P are defined as




A = 1 − 2γ>1 t1B1 + γ
>
1 γ1B2

1

B = [2(γ>1 t1) − 2γ>1 γ1B1]A1

C = (γ>1 γ1)A2
1 − 1

E = 1 − 2γ>2 t2B2 + γ
>
2 γ2B2

2

F = [2(γ>2 t2) − 2γ>2 γ2B2]A2

G = (γ>2 γ2)A2
2 − 1

H = γ>1 γ2 A1 A2 − (Tw
1 )>Tw

2

J = [γ>2 t1 − γ
>
1 γ2B1]A2

K = [γ>1 t2 − γ
>
1 γ2B2]A1

L = t>1 t2 − γ
>
2 t1B2 − γ

>
1 t2B1 + γ

>
1 γ2B1B2,

M = EH2 − FHK + GK2

N = E J2 − F JL + GL2

P = (2EH J − FHL − F JK + 2GK L)

(3.14)

where



A1 =
(Γw

1 − Γw
2 )>Tw

1

(ρ1γ1 − ρ2γ2)>γ1

A2 =
(Γw

1 − Γw
2 )>Tw

2

(ρ1γ1 − ρ2γ2)>γ2

B1 =
(ρ1γ1 − ρ2γ2)> t1
(ρ1γ1 − ρ2γ2)>γ1

B2 =
(ρ1γ1 − ρ2γ2)> t2
(ρ1γ1 − ρ2γ2)>γ2

.

(3.15)

Moreover,



ρ1
g1

G1
= −

AM − CN
AP − BN

ρ2
g2

G2
= −

EMA − GNA

EPA − FNA
,

(3.16)

where MA, NA, and PA are defined as




MA = AH2 − BH J + CJ2

NA = AK2 − BK L + CL2

PA = 2AHK − BHL − BK J + 2CJL,

(3.17)

and



ρ′1
G1
= A1 − B1ρ1

g1

G1
ρ′2
G2
= A2 − B2ρ2

g2

G2
.

(3.18)

Proof. (Of the Lemma and completing that of Theorem 3.1) An
image point γ is related to the underlying space point Γ through
Γ = ργ, Eq. 3.2. A space point Γ in local coordinates is related to
Γw in the world coordinates by a rotation matrix R and translation
T through Eq. 3.1. Equating these at each of the two points gives




ρ1γ1 = RΓ
w
1 + T

ρ2γ2 = RΓ
w
2 + T ,

(3.19)
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where ρ1 and ρ2 are the depth at image points γ1 and γ2,
respectively. By differentiating with respect to the parameters of
γ1 and γ2 we have:




ρ1g1 t1 + ρ
′
1γ1 = RG1T

w
1

ρ2g2 t2 + ρ
′
2γ2 = RG2T

w
2 ,

(3.20)

where ρ′1 and ρ′2 are depth derivatives with respect to the curve
parameter, g1 and g2 are speeds of parametrization of γ1 and γ2,
respectively, and G1 and G2 are the speeds of parametrization
of the space curves Γ1 and Γ2, respectively. The vector Equa-
tions 3.19 and 3.20 represent 3 scalar equations for each point, so
that there are 12 equations in all. The parametrization speeds g1
and g2 are arbitrary and can be set to 1 uniformly, but we keep
them in general form. The given quantities are γ, t, and Γw , Tw

at each point. The unknowns are R, T (6 unknowns), ρ, ρ′ (4
unknowns), and the two speeds of the curve Γ at the two points,
12 unknowns in all. Therefore, in principle, two points should
provide enough constraints to solve the problem.

First, T is eliminated by subtracting the two Eqs. (3.19)

ρ1γ1 − ρ2γ2 = R(Γw
1 − Γw

2 ), (3.21)

which together with Eq. 3.20 gives a system of equations




ρ1γ1 − ρ2γ2 = R(Γw
1 − Γw

2 )

ρ1
g1

G1
t1 +

ρ′1
G1

γ1 = RT
w
1

ρ2
g2

G2
t2 +

ρ′2
G2

γ2 = RT
w
2 .

(3.22)

(3.23)

(3.24)

At this stage, the unknowns are ρ1, ρ2,
ρ′1
G1

,
ρ′2
G2

, ρ1
g1
G1

,
ρ2

g2
G2

, and R, nine numbers in all, which can potentially be
solved through the three vector equations (nine scalar equations)
in (3.22)–(3.24). The number of unknowns can be reduced by
eliminating R in a second step. The matrix R rotates three
known vectors, (Γw

1 − Γw
2 ), Tw

1 , and Tw
2 to the three unknown

vectors on the left side of these equations, requiring a preservation
of vector lengths and mutual angles. The length and relative
angles are obtained from the known dot products, which do
not involve R at all. This provides six equations for the six
unknowns {ρ1, ρ2,

g1
G1
,
g2
G2
,
ρ′1
G1
,
ρ′2
G2
}. Alternatively, we write these

three equations in matrix form composed from the three vector
equations (3.22)–(3.24), i.e.,

[
ρ1γ1 − ρ2γ2 ρ

g1
G1

t1 +
ρ′1
G1
γ1 ρ2

g2
G2

t2 +
ρ′2
G2
γ2

]
=

R
[
(Γw

1 − Γw
2 ) Tw

1 Tw
2

]

This is a system of six equations. Note that a clear geometric
condition for the problem to have a solution is that the vectors
{(Γw

1 −Γ
w
2 ), Tw

1 , T
w
2 } be non-coplanar. Taking the product of the

left hand matrix (also the right hand matrix) with its transpose,

and using R>R = I, gives




(ρ1γ1 − ρ2γ2)>(ρ1γ1 − ρ2γ2) = (Γw
1 − Γw

2 )>(Γw
1 − Γw

2 )

(ρ1γ1 − ρ2γ2)>(ρ1
g1

G1
t1 +

ρ′1
G1

γ1) = (Γw
1 − Γw

2 )>Tw
1

(ρ1γ1 − ρ2γ2)>(ρ2
g2

G2
t2 +

ρ′2
G2

γ1) = (Γw
2 − Γw

2 )>Tw
2

(ρ1
g1

G1
t1 +

ρ′1
G1

γ1)>(ρ1
g1

G1
t1 +

ρ′1
G1

γ1) = 1

(ρ2
g2

G2
t2 +

ρ′2
G2

γ2)>(ρ2
g2

G2
t2 +

ρ′2
G2

γ2) = 1

(ρ1
g1

G1
t1 +

ρ′1
G1

γ1)>(ρ2
g2

G2
t2 +

ρ′2
G2

γ2) = (Tw
1 )>Tw

2 .

(3.25)
The first equation is a quadratic in ρ1 and ρ2

γ>1 γ1 ρ
2
1 − 2γ>1 γ2 ρ1ρ2 + γ

>
2 γ2 ρ

2
2 = (Γw

1 − Γw
2 )>(Γw

1 − Γw
2 ),

(3.26)
which as a conic in the ρ1–ρ2 plane with negative discriminant

(γ1 · γ2)2 − (γ1 · γ1)(γ2 · γ2) = −‖γ1 × γ2‖
2 < 0 (3.27)

is an ellipse. The ellipse is centered at the origin so we can check
that it has real points by solving for ρ1 when ρ2 = 0, giving
ρ2

1‖γ1‖
2 = ‖Γw

1 − Γw
2 ‖

2, or real roots ρ1 = ±
‖Γw

1 −Γ
w
2 ‖

‖γ1 ‖
.

The remaining five equations involve the additional unknowns
{ρ1

g1
G1
, ρ2

g2
G2
,
ρ′1
G1
,
ρ′2
G2
}. The latter appear in a linear form in the

second and third equations, and in quadratic form in the last three
equations. Thus, the terms

ρ′1
G1

and
ρ′2
G2

can be isolated from the
second and third equations and then used in the last three equations




[(ρ1γ1 − ρ2γ2)>γ1]
ρ′1
G1

= (Γw
1 − Γw

2 )>Tw
1 − [(ρ1γ1 − ρ2γ2)> t1]ρ1

g1

G1

[(ρ1γ1 − ρ2γ2)>γ2]
ρ′2
G2

= (Γw
1 − Γw

2 )>Tw
2 − [(ρ1γ1 − ρ2γ2)> t2]ρ2

g2

G2
,

(3.28)

or




ρ′1
G1
=

(Γw
1 − Γw

2 )>Tw
1

(ρ1γ1 − ρ2γ2)>γ1
−

(ρ1γ1 − ρ2γ2)> t1
(ρ1γ1 − ρ2γ2)>γ1

· ρ1
g1

G1

= A1 − B1ρ1
g1

G1
ρ′2
G2
=

(Γw
1 − Γw

2 )>Tw
2

(ρ1γ1 − ρ2γ2)>γ2
−

(ρ1γ1 − ρ2γ2)> t2
(ρ1γ1 − ρ2γ2)>γ2

· ρ2
g2

G2

= A2 − B2ρ2
g2

G2
,

(3.29)
noting that A1, A2, B1, and B2 depend on only two of the
unknowns ρ1 and ρ2. The last three equations in (3.25) can be
expanded as




(
ρ1

g1

G1

)2

+ 2γ>1 t1

(
ρ1

g1

G1

) (
ρ′1
G1

)
+ γ>1 γ1

(
ρ′1
G1

)2

= 1(
ρ2

g2

G2

)2

+ 2γ>2 t2

(
ρ2

g2

G2

) (
ρ′2
G2

)
+ γ>2 γ2

(
ρ′2
G2

)2

= 1

t>1 t2 ρ1
g1

G1
· ρ2

g2

G2
+γ>2 t1 ρ1

g1

G1
·
ρ′2
G2
+ γ>1 t2ρ2

g2

G2
·
ρ′1
G1
+

γ>1 γ2
ρ′1
G1
·
ρ′2
G2
= (Tw

1 )>Tw
2 .
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Substituting
ρ′1
G1

and
ρ′2
G2

from Eqs. 3.29 gives




(
ρ1

g1

G1

)2

+ 2γ>1 t1 ρ1
g1

G1

(
A1 − B1 ρ1

g1

G1

)
+ γ>1 γ1

(
A1 − B1 ρ1

g1

G1

)2

= 1(
ρ2

g2

G2

)2

+ 2γ>2 t2 ρ2
g2

G2

(
A2 − B2 ρ2

g2

G2

)
+ γ>2 γ2

(
A2 − B2 ρ2

g2

G2

)2

= 1

t>1 t2 ρ1
g1

G1
ρ2

g2

G2
+ γ>2 t1 ρ1

g1

G1

(
A2 − B2 ρ2

g2

G2

)
+ γ>1 t2 ρ2

g2

G2

(
A1 − B1 ρ1

g1

G1

)
+ γ>1 γ2

(
A1 − B1 ρ1

g1

G1

) (
A2 − B2 ρ2

g2

G2

)
= (Tw

1 )>Tw
2 .

These three equations can be written in summary form using
x1 = ρ1

g1
G1

and x2 = ρ2
g2
G2

, Equations 3.7–3.9, with A through
L functions only of the two unknowns ρ1 and ρ2. Thus, these
three equations after solving for x1 and x2 express a relationship
between ρ1 and ρ2, which together with Eq. 3.26 can lead to a
solution for ρ1 and ρ2.

Equation 3.9, with given values for ρ1 and ρ2, represents a
rectangular hyperbola in the x1–x2 plane, as illustrated in Fig. 5,
and each of the Eqs. 3.7 and 3.8 represents a pair of (real) lines
in the same plane, parallel respectively to the x2 and x1 axes. In
general there will not be more than one intersection between the
aforementioned curves.

Specifically, the variables x1 and x2 can be solved by rewriting
Eq. 3.9 as

(H + Jx1) + (K + Lx1)x2 = 0, (3.30)

giving

x2 = −
H + Jx1

K + Lx1
. (3.31)

Using this expression in Eq. 3.8 gives

E
(H + Jx1)2

(K + Lx1)2 − F
H + Jx1

K + Lx1
+ G = 0, (3.32)

or

E(H + Jx1)2−F (H + Jx1)(K + Lx1)+G(K + Lx1)2 = 0. (3.33)

Reorganizing as a quadratic in x1, this solves for x1 which together
with Eq. 3.7 gives a constraint on the parameters depending on ρ1
and ρ2,




(E J2 − F JL + GL2)x2
1

+ (2EH J − FHL − F JK + 2GK L)x1

+ (EH2 − FHK + GK2) = 0

Ax2
1 + Bx1 + C = 0.

(3.34)

(3.35)

(3.36)

The quadratic term is eliminated by multiplying the first equation
by A and the second equation by E J2−F JL+GL2 and subtracting,
giving

(AP − BN )x1 + AM − CN = 0, (3.37)

so that
x1 = −

AM − CN
AP − BN

. (3.38)

Substituting back into Eq. 3.36 gives

A
[

AM − CN
AP − BN

]2

+ −B
AM − CN
AP − BN

+ C = 0, (3.39)

or

A3 M2 + AC2 N2 − 2A2CM N

+ (BCN − ABM)(AP − BN ) + C(AP − BN )2 = 0
(3.40)

The equation, after expressions for A, B, . . . , P are substituted in,
can be divided by ρ4

1ρ
4
2, giving an 8th order polynomial equation

in ρ1 and ρ2, i.e., Q(ρ1, ρ2) = 0. This equation together with
Eq. 3.26 represents a system of two equations in two unknowns




γ>1 γ1 ρ
2
1 − 2γ>1 γ2 ρ1ρ2 + γ

>
2 γ2 ρ

2
2 = ‖Γ

w
1 − Γw

2 ‖
2,

Q(ρ1, ρ2) = 0,
(3.41)

and gives a number of solutions for ρ1, and ρ2 which in turn solve
for the unknowns ρ1

g1
G1

, ρ2
g2
G2

,
ρ′1
G1

, and ρ2
G2

. Once these unknowns
are solved for, the rotation R can be obtained from the matrix
equation (3.1). The translation T is then solved from Eqs. 3.19 as

T = ρ1γ1 −RΓ
w
1 . (3.42)

�

4 A PRACTICAL APPROACH TOWARDS A SOLVER

Equations 3.6 can be viewed as the intersection of two curves
in the ρ1 − ρ2 space. Since one of the curves to be intersected
is shown to be an ellipse, it is possible to parametrize it by
a bracketed parameter and then look for intersections with the
second curve which is of degree 8. This gives a higher-order
polynomial in a single unknown which can be solved more readily
than simultaneously solving the two equations of degree 2 and 8.

Proposition 4.1. Solutions ρ1 and ρ2 to the quadratic equation
in (3.6) can be parametrized as




ρ1(t) =
2αt cos θ + β(1 − t2) sin θ

1 + t2

ρ2(t) =
−2αt sin θ + β(1 − t2) cos θ

1 + t2 ,

−1 ≤ t ≤ 1

where

tan(2θ) =
2(1 + γ>1 γ2)

γ>1 γ1 − γ
>
2 γ2

, 0 ≤ 2θ ≤ π,

and

α =

√
2‖Γw

1 − Γw
2 ‖√

(γ>1 γ1 + γ
>
2 γ2) + (γ>1 γ1 − γ

>
2 γ2) cos(2θ) + 2γ>1 γ2 sin(2θ)

, α > 0,

β =

√
2‖Γw

1 − Γw
2 ‖√

(γ>1 γ1 + γ
>
2 γ2) − (γ>1 γ1 − γ

>
2 γ2) cos(2θ) − 2γ>1 γ2 sin(2θ)

, β > 0.

Proof. An ellipse centered at the origin with semi-axes of lengths
α > 0 and β > 0 and parallel to the coordinates x and y can be
parametrized as

x =
2t

1 + t2 α, y =
(1 − t2)
1 + t2 β, t ∈ (−∞,∞), (4.1)

with ellipse vertices identified at t = −1, 0, 1 and ∞, as shown in
Fig. 6. For a general ellipse centered at the origin, the coordinates
must be multiplied with the rotation matrix for angle θ, obtaining




ρ1 =
2αt cos θ + β(1 − t2) sin θ

1 + t2

ρ2 =
−2αt sin θ + β(1 − t2) cos θ

1 + t2 .

−1 ≤ t ≤ 1
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Fig. 6. A parametrization of the ellipse by a parameter t .

Fig. 6 illustrates this parametrization. Notice that the range of
values of t we need to consider certainly lies in [−1, 1] and in fact
in a smaller interval where ρ1 > 0 and ρ2 > 0. Note that t and − 1

t
correspond to opposite points on the ellipse.

The parameters α, β, and θ for the ellipse in Eqs. 3.26 and 3.6
can be found by substitution of ρ1 and ρ2 in the parametric form
into Eq. 3.26. Specifically, writing

γ>1 γ1

(1 + t2)2 [4α2t2 cos2 θ + β2(1 − t2)2 sin2 θ + 4αβt(1 − t2) sin θ cos θ]

−
2γ>1 γ2

(1 + t2)2 [−4α2t2 sin θ cos θ + 2αβt(1 − t2) cos2 θ

− 2αβt(1 − t2) sin2 θ] + β2(1 − t2)2 sin θ cos θ

−
2γ>2 γ2

(1 + t2)2 [4α2t2 sin2 θ + β2(1 − t2)2 cos2 θ

− 4αβt(1 − t2) sin θ cos θ] = ‖Γw
1 − Γw

2 ‖
2.

(4.2)
Simplifying the equation as

[γ>1 γ14α2t2 − γ>1 γ24αβt(1 − t2) + (γ>2 γ2) β2(1 − t2)2] cos2 θ

+ [γ>1 γ1 β
2(1 − t2)2 + γ>1 γ24αβt(1 − t2)γ>2 γ24α2t2] sin2 θ

+ [γ>1 γ14αβt(1 − t2) + (γ>1 γ28α2t2 − γ>1 γ22β2(1 − t2)2

− γ>2 γ24 βt(1 − t2)] sin θ cos θ = (1 + t2)2‖Γw
1 − Γw

2 ‖
2

(4.3)

and using trigonometric identities cos2 θ = 1+cos(2θ)
2 and sin2 θ =

1−cos(2θ)
2 , cos2 θ − sin2 θ = cos(2θ) and sin(2θ) = 2 sin θ cos θ,

[γ>1 γ14α2t2 − γ>1 γ24αβt(1 − t2) + γ>2 γ2 β
2(1 − t2)2]

· (1 + cos(2θ))+

[γ>1 γ1 β
2(1 − t2)2 + γ>1 γ24αβt(1 − t2) + γ>2 γ24α2t2]

· (1 − cos(2θ))+

[γ>1 γ14αβt(1 − t2) + γ>1 γ28α2t2 − γ>1 γ22β2(1 − t2)2

− γ>2 γ24αβt(1 − t2)] sin(2θ) = 2(1 + t2)2‖Γw
1 − Γw

2 ‖
2.

(4.4)
which is an equation only involving the unknown θ,

(γ>1 γ1 + γ
>
2 γ2)[4α2t2 + β2 (1 − t2)]+

[(γ>1 γ1 − γ
>
2 γ2)[4α2t2 − β2 (1 − t2)2] − γ>1 γ28αβt (1 − t2)] cos 2θ

[(γ>1 γ1 − γ
>
2 γ2)4αβt (1 − t2) + 2γ>1 γ2[4α2t2 − β2 (1 − t2)2]] sin 2θ

= 2(1 + t2)2 ‖Γw
1 − Γw

2 ‖
2 .

(4.5)

This equation holds for all values of t. For t = 0,

(γ>1 γ1 + γ
>
2 γ2) β2 − (γ>1 γ2 − γ

>
2 γ2) β2 cos 2θ (4.6)

− 2γ>1 γ2 β
2 sin 2θ = 2‖Γw

1 − Γw
2 ‖,

giving

β2 =
2‖Γw

1 − Γw
2 ‖

2

(γ>1 γ1 + γ
>
2 γ2) − (γ>1 γ1 − γ

>
2 γ2) cos 2θ − 2γ>1 γ2 sin 2θ

.

(4.7)
Similarly, at t = 1,

(γ>1 γ1 + γ
>
2 γ2)4α2 + (γ>1 γ1 − γ

>
2 γ2)4α2 cos 2θ (4.8)

+ 2γ>1 γ24α2 sin 2θ = 8‖Γw
1 − Γw

2 ‖
2,

giving

α2 =
2‖Γw

1 − Γw
2 ‖

2

(γ>1 γ1 + γ
>
2 γ2) + (γ>1 γ1 − γ

>
2 γ2) cos 2θ + 2γ>1 γ2 sin 2θ

.

(4.9)

�

Both equations in (3.6) are symmetric with respect to the origin
in the (ρ1, ρ2)-plane and the curves will intersect in at most 2×8 =
16 real points, at most 8 of which will be in the positive quadrant,
as we in fact require ρ1 > 0 and ρ2 > 0.

The parametrization of the ellipse given in Proposition 4.1
allows us to reduce the two Eqs. 3.6 to a single polynomial
equation in t. Substituting for ρ1, ρ2 in terms of t into Q = 0
gives an equation in t for which, in fact, all the denominators are
(1 + t2)12, so that these can be cleared leaving a polynomial in
Q̃(t) of degree 16. The symmetry with respect to the origin in the
(ρ1, ρ2)-plane becomes, in terms of t, a symmetry with respect
to the substitution t → −1/t, which gives diametrically opposite
points of the ellipse. This implies that Q̃ has the special form

Q̃(t) = q0 + q1t + q2t2 + · · · + q16t16, (4.10)

where qi = −q16−i for i odd. At most 8 solutions will lie in the
range −1 < t ≤ 1, and indeed we are only interested in solutions
which make ρ1 > 0 and ρ2 > 0.

5 EXPERIMENTS

The Matlab code for this paper is available at github.com/rfabbri/
diffgeom2pose. Our goal was to provide a reference and reliable
implementation rather than highly optimized code. We use two
sets of experiments to probe camera pose recovery: synthetic
and real data. For the synthetic data, we employ two datasets: a
simple random synthetic dataset, and a more extensive, realistic
dataset consisting in a variety of analytic 3D curves (helices,
parabolas, ellipses, straight lines, and saddle curves), Fig. 7. For
the real data we test on two different datasets and compare against
the dataset ground-truth. For the synthetic dataset, in addition to
comparing against ground truth we compare our Matlab reference
implementation against the state-of-the-art P3P solver recently
made available in the OpenMVG SfM pipeline [38] as highly
optimized C++ code. Experiments were run on a cluster of Intel
Xeon E5-2670 with GNU Parallel [39].

5.1 Synthetic experiments
The first experiment is a test with perfect correspondence, ex-
ercising a wide range of random data variation to provide a
ballpark on robustness and speed of the solver, taking an optimized
P3P implementation as reference. Ground-truth translations are
normally sampled around (0, 0, 10)> with σ = 1, while camera
rotations are uniformly sampled; points in space are normally
sampled around the origin with σ = 1, and 3D tangents are

github.com/rfabbri/diffgeom2pose
github.com/rfabbri/diffgeom2pose
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uniformly generated, then projected. The pose is estimated by our
P2PT algorithm and by P3P from OpenMVG for each sample.
Rotation error is measured by the angle (around an axis) of
the rotation that aligns the reconstructed camera to the ground
truth [40]. For 105 repetitions of this initial experiment, the
average time is 15 ms for the proposed P2PT in Matlab – less
than half if adjusting for smaller number of required RANSAC

runs – vs 12 µs for P3P in C++. This is remarkably efficient given
that our Matlab implementation has no code optimizations and
the problem degree is 4 times higher. The rotation and translation
errors had mean at 10−13 for P2PT vs 10−7 for P3P. The mean
number of solutions was 4 for both solvers. We next explore these
statistics in more detail, together with stability tests for a more
realistically-structured synthetic dataset.

Our main synthetic dataset developed for this paper is publi-
cally available at multiview-3d-drawing.sourceforge.net. The ana-
lytic space curves shown in Fig. 7 are synthesized in a 4×4×4 cm3

volume and projected to 100 cameras and are sampled to get
5117 potential data points/tangents that are the projections of
the same 3D analytic points and tangents. Camera centers are
randomly sampled around an average sphere around the scene
along normally distributed radii of mean 1 m and σ = 10 mm.
Rotations are constructed via normally distributed look-at direc-
tions with mean along the sphere radius looking to the object,
and σ = 0.01 rad such that the scene does not leave the viewport,
followed by uniformly distributed roll. This sampling is filtered
such that no two cameras are within 15◦ of each other. Each
camera encompasses a 500 × 400 pixel viewport, where the entire
dataset is always visible at sub-pixel precision with no more than
one sample per pixel. These curve samples are then degraded with
noise and mismatches. The image location and tangent orientation
are perturbed to simulate measurement noise in the range of 0-
2 pixels in location and 0-10◦ in orientation. We add uniform
noise to each point coordinate in the range (−∆pos,∆pos), with
∆pos ∈ {0, 0.5, 1, 2}, and add uniform angular noise to the tangent
vector in the range (−∆θ,∆θ ) for ∆θ ∈ {0◦, 0.5◦, 1◦, 5◦, 10◦}. Our
expectation using the publically available edge detector [20] is
that the edges can be found with subpixel accuracy and edge
orientations are guaranteed accurate to less than 5◦ [19].

To simulate the intended application, pairs of 2D-3D point-
tangent correspondences for each of the 100 views are selected
in a RANSAC procedure from among 5117 veridical ones, to
which 50% random spurious correspondences were added. The
proposed P2PT solver estimates the pose of the camera inside the
RANSAC loop. Only 17 P2PT runs suffice to hit an outlier-free
correspondence pair 99% of the time, rather than 35 P3P runs; or
only 32 P2PT runs suffice for 99.99% probability rather than 70
P3P runs. For the same number of runs, P3P will fail orders of
magnitude more often than P2PT, as shown in the Introduction.
To be fair when comparing with P3P, the pose of each of the 100
views in the dataset was estimated using 100 RANSAC iterations
for both P2PT and P3P.

To assess the output of the algorithm, we not only measure
the error of the estimated pose compared to the ground truth,
but, more meaningfuly, the impact of the measured pose on the
measured reprojection error. Since this is a controlled experiment,
we measure final reprojection error not just to the inlier set, but
to the entire pool of 5117 true correspondences. In practice, a
bundle-adjustment is always run on the results with the greatest
number of inliers, to refine the pose estimate using all inliers;
but we first report the raw intermediate errors without nonlinear

Fig. 7. Our synthetic dataset comprises 100 random views of analytic
space curves on a near-spherical configuration (top), at human scale.
Sample views and 3D curves are shown in the bottom row for stereo
viewing with parallel eyes (left pair) or with crosed eyes (right pair).

least-squares refinement. The distribution of individual pixel-wise
reprojection error of each of the 100 RANSAC solves (having
100 iterations each) is plotted for various levels of measurement
noise, Fig. 8(left). What is shown for each ∆pos and ∆θ is the
standard boxplot of all 511,700 (5117 points across the 100
views) reprojection errors. On each box, the central mark indicates
the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, resp. The whiskers extend to the
most extreme data points not considered as generic outliers (not
RANSAC outliers), and outliers are plotted individually using dot
marks; an outlier is a value that is more than 1.5 times the
interquartile range away from the top or bottom of the box. A
small fraction of outliers is expected as long as the cumulative
error is not significantly affected.

The plots show that the relative camera pose can be effectively
determined for a viable range of measurement errors, specially
since these results are typically optimized in practice through
bundle adjustment. We also ran out-of-the-box point-based bundle
adjustment on top of the RANSAC results, which is standard
practice, and recorded the distribution of reprojection errors,
shown in Fig. 8 (right). The plots in Fig. 8 show that both the
positional and tangential accuracy of the data are important to
constrain the camera pose using the proposed technique. With
(point-based) bundle adjustment, the distributions become sharper
for each level of localization noise, most with the same median
as before bundle adjustment that reflects the synthesized ground-
truth noise. For each of these, the tangent noise does not affect
the plot anymore, since the bundle adjustment is not using tangent
information; more importantly, this shows that all the solutions
found using our technique are within the optimal convergence
basin for bundle adjustment (optimal in the sense of having the
minimum reprojection error we synthesized), even when tangents
are pertubed to 10◦. Therefore, the proposed technique is stable
for practical usage. This is confirmed in the remaining plots for
final translational and rotational error, Fig. 8, which show good
precision, even when the initial perturbations are high.

multiview-3d-drawing.sourceforge.net
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Fig. 8. Distributions of reprojection (top row), rotation (middle), and translation errors (bottom), for using synthetic data of Fig. 7, without bundle
adjustment (left column) and after bundle adjustment (right), for levels of positional (x axes) and tangential noise (colors). The proposed P2PT
stably matches ground truth and P3P, with only two correspondences. The rotation and translation errors on the right column are close to zero.

5.2 Real data experiments

Capitol sequence. This dataset comprises 256 1280 × 720 frames
covering a 90◦ helicopter fly-by around the Rhode Island State
Capitol, Fig. 2. Intrinsic parameters were initialized using the Mat-
lab toolbox from J. Bouguet. Camera parameters were obtained by
running the standard SfM pipeline Bundler [6].

To get point-tangents, we picked a set of manual edge corre-
spondences (in this case 30) across 3 views, and reconstructed a
3D cloud of edges from the first two using the dataset cameras.
These first two views are meant to resemble the initial boost-
rapping of SfM from an Essential matrix technique. The third
view plays the role of novel views to be iteratively integrated and
registered by an SfM system. The correspondences are obtained
by clicking detected image edges [20] on a specialized GUI, using

epipolar geometry as a guide. To help determine the ground-
truth correspondence, as part of the manual operation within a
GUI, in addition to two-view epipolar geometry, we also employ
a trinocular stereo constraint based on transfer of differential
geometry from two views to a third [12], [22], [41], [42]. The
edge detector [20] provides subpixel edges sampled as discrete
vector fields (samples of point-tangents) along image curves. We
reconstruct the marked 3D edge points using standard two-view
triangulation, and their directions using [22, eq. 4.11]. For every
new view for which the pose is to be determined, manual 2D
edge correspondences to this new view induce a 3D-2D edge
correspondence, just as in the Essential matrix + P3P stage of
an SfM pipeline. The correspondences across three views give a
set of 3D-2D correspondences with which we seek to determine
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Fig. 9. The reprojection error distribution for real data (Capitol sequence
and Middlebury Dino) using only two point-tangents.

the pose of the third view and compare to the dataset pose. Pairs
of matches from 3D edges to observed edges in novel views are
used with RANSAC to compute the camera pose with respect to the
frame of the 3D points, and measure reprojection error. We added
50% outliers to the set of manual correspondences before running
RANSAC followed by bundle adjustment.

Fig. 9 shows the error distribution of our method for a single
point-tangent pair after RANSAC, before and after running bundle-
adjustment, versus the dataset ground-truth from Bundler (which is
bundle-adjusted), for the Capitol. P2PT achieved an average error
of 1.1px and 0.76px before and after a metric bundle adjustment,
respectively, versus 1.3px from Bundler.
Dino sequence. The standard dataset [43], Fig. 9, has 363 views
at 640 × 480 on a hemisphere around the object. The data is
low-resolution compared to the Capitol dataset. The ground-truth
cameras were generated by estimating the global parameters of a
spherical gantry and camera intrinsics with J. Bouguet’s toolbox
and other software. Laser-scans of the dino were merged and the
cameras aligned. Point-tangents were obtained as for the Capitol,
but with 10 correspondences. The camera accuracy is ‘about’ 1-
2px according to the authors. Even though this is a strict dataset,
the average error using the ground-truth camera is 0.88px, while
the average reprojection error using our method are 1.03px and
0.66px before and after bundle adjustment, respectively.

6 CONCLUSIONS

We presented and characterized a new minimal problem and a
practical solver for absolute pose estimation – a P2PT comple-
mentary alternative to P3P that requires only two pairs of 3D-
2D corresponding points instead of the usual three, where the
points are attributed with oriented tangents or incident lines. This
is useful for bootstrapping SfM from challenging low-texture
data, such as indoor and man-made scenes [8]. It serves as a the
core local differential formulation of pose estimation for general
curve data when point features are insufficient, but also works in
useful particular cases such as corners which have incident lines,
widespread in buildings, and in ongoing work we have observed
that widespread SIFT feature points with SIFT orientations as the
tangents also work well. The proposed theory employs a judicious
mixture of algebraic and differential-geometric techniques that

exploit the geometry of the problem to produce a stable and
relatively fast solver in Matlab, including orientation constraints.
We show that this is a 16-degree minimal problem, but careful
exploitation of orientation constraints and symmetries drop the
number of solutions to fewer than 8. Experiments on real and syn-
thetic data demonstrate the stability and accuracy of the proposed
solver, matching the performance of widely used SfM protocols
including the OpenMVG P3P implementation. Using one less cor-
respondence drastically reduces RANSAC combinatorics, so P2PT
has an advantage over P3P for exceptional levels of robustness and
thus potentially in speed, with the caveat that it is solving a not
necessarily competing new problem.

We have been actively working on relative pose estimation
from corresponding point-tangents across 3 views. Preliminary
work [24] has shown that only three triplets of correspondences are
sufficient, with fewer if higher-order geometry can be employed.
The underlying polynomial is of high degree (320) – an order
of magnitude higher than the polynomial treated here. By fusing
the detailed approach presented this paper with more generic and
scalable techniques from both symbolic and numerical algebraic
geometry, we plan to solve a series of related problems to allow
a complete curve-based structure from motion system starting
from a set of images without any initial pose, with this paper
as an alternative to P3P, and the follow-up trifocal method [24]
as an alternative to the Essential matrix. We are in the process of
integrating these into widely-used C++ SfM pipelines.
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