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1. OVERVIEW

The distance transform (DT) maps each image pixel into its smallest distance to regions
of interest [Rosenfeld and Pfaltz 1966]. It is a fundamental geometrical operator with
great applicability in computer vision and graphics, shape analysis, pattern recogni-
tion, and computational geometry. DT methods are useful propagation schemes that
efficiently construct a solution to the eikonal differential equation [John 1982] in the
integer lattice. This in turn, is related to many other important entities such as medial
axes, Voronoi diagrams, shortest-path computation, and image segmentation.

The DT can be defined in terms of arbitrary metrics. The Euclidean distance is often
necessary in many applications, as it is the adequate model to numerous geometrical
facts of the human-scale world. However, as in pure mathematics, some non-Euclidean
metrics are much easier to manipulate and to compute. For this reason, efficient non-
Euclidean DT algorithms have been reported since 1966, while fast algorithms for
the exact Euclidean DT (EDT) started to appear only in the 1990s. Many others have
recently been proposed, as described in Section 7.

It is still uncertain what is the best exact EDT algorithm, or even whether the re-
cently proposed ones are correct or not. Moreover, validation of EDT methods is scarce
and incomplete. In the majority of cases, comparative evaluation is published in the
manuscript where an algorithm being judged is also being proposed. This survey is tar-
geted at a novel method, with test cases that tend to emphasize its assets and overlook
liabilities.

Comprehensive validation and comparison of methodologies is still incipient in im-
age analysis, mainly because the algorithms are complicated, and because this type of
activity tends to be disregarded [Jain and Binford 1991]. In the case of EDTs, thorough
evaluation faces a series of particular difficulties. To begin with, interesting EDT meth-
ods are numerous, recent, and relatively obscure both in theory and implementation.
In addition, performance depends on the contents of the input image, not only on its
size. Therefore it is not trivial to predict the behavior of an EDT algorithm on a given
input. Another difficulty is that there exist a number of factors that can be used to
compare the algorithm, such as temporal and spatial performance, exactness, and ease
of implementation.

2. OBJECTIVES

The main purpose of this article is to provide an updated study, comparison and vali-
dation of EDT algorithms, reaching solid conclusions about the advantages and short-
comings of each. Such conclusions are useful for advancing the theory of EDT, as well
as to support the adoption of fast methods in practical applications. This study is also
valuable for improving computation of entities related to EDT, such as shape skeletons
and discrete Voronoi diagrams, fractal dimension, and segmentation.

The main points to be clarified by the empirical tests are: which algorithms are
verified to be exact, which are the fastest, and in which cases. There are six recent exact
EDT algorithms we selected to be compared [Lotufo and Zampirolli 2001; Eggers 1998;
Cuisenaire and Macq 1999b; Saito and Toriwaki 1994; Maurer et al. 2003; Meijster
et al. 2000].
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Another aim of this work is to characterize the performance of the algorithms for
different classes of shape. Ideally, given an image type one wishes to determine the
best algorithm for it. This analysis is specially relevant since our empirical results
show that each EDT algorithm tends to have a very distinct behavior in terms of the
input shape.

We restrict the study in this article to 2D exact EDT algorithms on sequential ar-
chitectures. For a recent account of general 3D distance transforms (not specific to the
exact EDT), please refer to Jones et al. [2006].

3. ORGANIZATION

This work is organized as follows. The next section presents the formal definitions
required for a precise understanding of the ideas. However, it is suggested that the
definitions of Section 4.2 be read only as needed. In Section 5 there is an account of
DT applications, to illustrate its importance and its relation to other entities. Section 6
illustrates the importance of the Euclidean metric, motivating the need for efficient EDT
schemes. The main recent EDT algorithms are organized and explained in Section 7.
Section 8 describes the methodology for speed and exactness tests. The results of the
tests are shown in Section 9. Finally, Section 10 lists the main contributions of this
work, and future activities.

4. DEFINITIONS

4.1. Main Concepts

The idea of a distance transform (DT) is quite simple, but it is nevertheless necessary to
be established with rigor and clarity to avoid confusion caused by using slightly different
conventions throughout the literature. Furthermore, some concepts and conventions
must be precisely defined for a correct understanding of this work, especially Section 7.

The central problem of a DT is to compute the distance of each point of the plane to
a given subset of it. In image processing terminology, this is rephrased in the following
way. Let I : � ⊂ Z

2 → {0, 1} be a binary image where the domain � is convex and,
in particular, � = {1, . . . , n} × {1, . . . , n}, unless otherwise stated. By convention, 0 is
associated to black, and 1 to white. Hence we have an object O represented by all the
white pixels:

O = {p ∈ � | I (p) = 1}.

The set O is called object or foreground and can consist of any subset of the image
domain, including disjoint sets. The elements of its complement, Oc, the set of black
pixels in �, are called background. From the DT point of view, the background pixels
are called the interest points, seeds, sources, feature points, sites, or Voronoi elements.
In spite of being counterintuitive, this is a convention frequently adopted in the DT
literature.

Definition 4.1. The distance transform (DT ) is the transformation that generates a
map D whose value in each pixel p is the smallest distance from this pixel to Oc:

D(p) := min{d(p, q) | q ∈ Oc} = min{d(p, q) | I (q) = 0}. (1)

The image D is called the distance map of I (or of O, in case I is tacitly understood).

D itself can also be called a distance transform, if there is no ambiguity between the
image D and the transformation (DT) that generated it. The term DT may also refer
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(a) (b)

Fig. 1. Numerical example of distance transform. In (b) there is the Euclidean distance of each pixel to the
nearest black pixel. The distance values are squared so that only integer values are stored.

to a DT algorithm, depending on the context.
It is assumed that Oc contains at least one pixel, as in Rosenfeld and Pfaltz [1966],

otherwise the output of the DT is undefined. Moreover, d (p, q) is generally taken as
the Euclidean distance, given by:

d (p, q) =
√

(px − qx)2 + (py − qy )2. (2)

Figure 1 shows a numerical example of EDT. For each pixel in Figure 1(a), the corre-
sponding pixel in the DT of Figure 1(b) holds the smallest Euclidean distance between
this pixel and all the other black pixels. The squared Euclidean distance is used for
saving storage: since the pixel coordinates are integers, the square of the Euclidean
distance d2(p, q) is also an integer.

The DT can be visualized as a surface whose height is proportional to the distances,
as in Figure 2(b), or as an image whose intensity is proportional to the distances, as in
Figure 2(c). Another interesting visualization can be obtained by taking the modulo-n
operation (the remainder of the division by n) for each distance value: Dmod n(p) = D(p)
mod n. As the distance increases, the value of Dmod n repeats itself, falling between 0
and n−1. Hence, there will be abrupt changes from n−1 to 0 emphasizing iso-distance
curves, as shown in Figure 2(d).

Various metrics, in addition to the Euclidean, can be used to compute the distance
in Equation (1). Frequently used examples are the city-block (d1) and chessboard (d∞),
defined by:

d1(x, y) = |x1 − y1| + |x2 − y2|
d∞(x, y) = max{|x1 − y1|, |x2 − y2|}.

These metrics are less costly to compute than the Euclidean metric.

4.2. Further Definitions and Conventions for Reference

In this article, N denotes the total number of pixels in an image, and n is the number
of lines or columns in a square n × n image. A more general interpretation for n is as√

N for a c × r image of N = c · r pixels, where r and c are the number of lines and
columns, respectively. The symbol N denotes a neighborhood, defined as a set of ordered
pairs representing relative displacements or vectors. The notation d (p, q) denotes the
squared Euclidean distance or the Euclidean distance itself, depending on the context,
as long as there is no ambiguity. The norm notation will also be used: ‖p‖ := d (p, O),
where O is the origin, and d (p, q) = ‖p − q‖.
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Fig. 2. The image of a spiraled shape (a) and representations of the distance transform of its border, where
the height of the surface in (b) or the brightness in (c) are proportional to the smallest distance of each point
to the border pixels. In (d) there is a visualization of iso-distance curves.

An EDT algorithm is said to be exact for a given collection of images if it produces
an exact map for all the images. If it is inexact for one of the considered images, the
EDT is said to be inexact. The EDT is said to be exact (without specifying a collection
of images) if it is exact for every possible input image.

The main focus of this work is the temporal complexity of EDT algorithms. The
asymptotic upper bound O( f (n)), lower bound �( f (n)), and equivalence �( f (n)), will
be expressed as a function of n, and not of N .1 As every EDT algorithm visits each
image pixel at least once, the best possible algorithm will be O(n2), �(n2), and thus,
�(n2). In fact, some authors have already proposed exact EDT algorithms that run in
�(n2), as will be seen in Section 7. These algorithms are linear-time in terms of total
number of input pixels N = n2.

Another convention is that a boundary pixel p (or contour pixel) is a white pixel that
has at least one black pixel in its neighborhood N (p). Boundary (or contour) is the set
of all the boundary pixels.

An important entity throughout this article is the point-wise Voronoi diagram (VD)
and related concepts. The definitions adopted in this article are given briefly as follows;

1Further information about the �( f (n)), �( f (n)), and O( f (n)) notations can be found in Knuth [1976]. Recall
that the �( f (n)) notation is not the average-case complexity of an algorithm.
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a comprehensive account is given in Aurenhammer [1991]; Fabbri et al. [2002]; and
Preparata and Shamos [1990].

The Voronoi region (VR) of an interest point2 is the set of points strictly closer to it
than to any other interest point. Other names for VR are: Voronoi polygon, Voronoi tile,
and region of influence. The Voronoi element closest to a given pixel p is denoted by
V S(p). In case p has two or more closest sites, one of them is arbitrarily chosen to be
V S(p). By definition, the point-wise Voronoi diagram is the set of points closest to one
or more sites, that is, the points not in any Voronoi region. A Voronoi partition is the
collection of the VRs of all sites or seeds. To build the partition, each point of the VD is
arbitrarily attributed to the VR of one of the sites minimally equidistant to it.

The Voronoi partition can be represented by the label map, where each VS has an
associated label (a number) that identifies this VS and pixels of its VR. The label map
is formally defined as:

Label : � → {
1, . . . , ns

}
p 	→ Label(p) = {

Label(q) | q = VS(p)
}
,

where ns is the number of sites (and of VRs). A similar map is the nearest-site or
nearest-feature map, that to each pixel p associates VS(p). Yet another similar entity
is the vectorial DT, that to each pixel p associates a vector pointing to EV(p).

5. APPLICATIONS

The DT is a fundamental operator in shape analysis, having numerous applications,
some of which are briefly listed bellow.

—Separation of overlapping objects through watershed segmentation [Soille and Vin-
cent 1991; Cuisenaire and Macq 1999b]. Figure 3 illustrates this application. Con-
sider the task of counting the number of blood cells in a microscope image. A problem
that frequently occurs is illustrated in Figure 3(a), where there are two overlapping
cells that appear as a single connected component in the binary image of Figure 3(b).
To count the number of cells through the number of connected components, those
overlapping instances must be properly separated. This can be done by first comput-
ing the DT of the connected components, shown in 3(c). Note that the peaks of the
distance map locate the centers of the overlapping cells. By performing watershed
segmentation on the inverse of the distance map, the overlapping cells get separated,
as in Figure 3(d).

—Computation of morphological operators [Ragnemalm 1992; Parker 1997; Cuisenaire
2006]. If the DT is thresholded at level r, the object pixels of the resulting image
are those whose distance to the background is greater than r. This is the same as
eroding the original image with a disc of radius r. Therefore, once the DT is computed,
simple thresholding provides erosion with a desired radius. Similarly, considering the
inverse image, one obtains the DT of the background. Thresholding this image yields
the dilation of the original image by an arbitrary radius. The DT is thus extremely
useful for implementing other operators of mathematical morphology that are based
on successive erosions. For example, one can use it to obtain an image representing
successive opening operations, as in Parker [1997]. Moreover, from that image one can
obtain the roughness spectrum [Parker 1997], which has been extensively applied for

2Recall the other names for interest point are: Voronoi site (VS), Voronoi element, seed, and source, and that
they consist of black or background pixels.
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Fig. 3. Identification of overlapping blood cells. Steps: (a) Overlapping cells; (b) initial segmentation; (c)
Euclidean distance transform; and (d) watershed segmentation.

the classification of porous materials and other images having distribution of holes of
varying sizes. An example of such images comes from rocky oil reserves [Parker 1997].
The operation of successive dilation is also useful for generating a morphological
scale-space [Chen and Yan 1989], enabling an intrinsic and hierarchic structural
analysis of shape.

—Computation of geometrical representations and measures, such as skeletoniza-
tion [Ge and Fitzpatrick 1996; Danielsson 1980; Saúde et al. 2006; Couprie et al.
2006; Coerjolli and Montanvert 2007], Voronoi diagrams and Delaunay triangu-
lation [Vincent 1991], fractal dimension [Coelho and Costa 1996], Gabriel graphs
[Vincent 1991], among others [Borgefors and Nyström 1997].

—Robot navigation, to find the shortest path from one place to another among obsta-
cles [Chin et al. 2001; Shih and Wu 2004c; Cuisenaire and Macq 1999b].

—Shape matching [Borgefors 1986; Paglieroni 1992a; Liu and Srinath 1990; You et al.
1995]. Basically, this application consists in the correlation of a binary template
with the DT of the binary image, where objects similar to the template are to be
found. An advantage of using the DT here is the fact that the resulting correlation
surface is smoother than the correlation performed over the original binary image.
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This is better suited for fast convergence of optimization algorithms. DT-based
correlation has also been used for stereo feature matching. More details are found
in Paglieroni’s [1992a] paper.

—Shape measures related to distance [Rosenfeld and Pfaltz 1968, 1966; Cuisenaire
and Macq 1999b]. For instance, the maximum of the DT of an object is its width; the
distribution of the distances in the DT is also a useful shape descriptor.

—Other interesting areas in which the DT has been applied are: image regis-
tration [Kozinska et al. 1997; Cuisenaire and Macq 1999b]; subpixel contour
tracing [Siddiqi et al. 1997]; multidimensional data analysis (classification, clus-
tering) [Starovoitov 1996]; image enhancement [Zeng and Hirata 2003]; ray-tracing
optimization [Paglieroni 1997; Sramek and Kaufman 2000]; embedding surface
for level set-based methods [Sethian 1999; Osher and Sethian 1988; Tek and
Kimia 2003; Siddiqi et al. 1997; Sebastian et al. 2003; Xia et al. 2004]; efficient
belief-propagation [Felzenszwalb and Huttenlocher 2006]; multiphase flow simu-
lations [Ceniceros and Roma 2005]; medical image analysis [Cuisenaire and Macq
1999b; hao Tseng et al. 1998; Wintermark et al. 2002; Jolesz et al. 1997; Thiran and
Macq 1996; Saito and Toriwaki 1994; Sebastian et al. 2003]; analysis of interaction
between biological structures [Travençolo et al. 2007]; botanics [Travis et al. 1996];
and geology [Paglieroni 1997; Parker 1997].

There is also evidence that processes linked to the EDT are related to phenomena of
perception and biology [Kovács and Julesz 1994; Kimia 2003; Blum 1967; Leyton 1992].

6. THE IMPORTANCE OF THE EUCLIDEAN DT AND ITS EXACTNESS

In spite of being a simple concept, the DT is hard to compute with good efficiency and
precision. The difficulty lies in the fact that its definition involves a point-wise distance
minimization (cf. Equation 1). One way to improve DT computation is to consider local
properties of the metric so as to avoid performing global minimization independently
for each pixel, as will be explained in Section 7. This type of optimization has been
explored as the basis of efficient algorithms for non-Euclidean metrics since the DT
itself was first described in 1966 [Rosenfeld and Pfaltz 1966, 1968; Borgefors 1984,
1986].

However, difficulties involving non-local properties of the Euclidean metric on dis-
crete lattices [Ge and Fitzpatrick 1996; Cuisenaire and Macq 1999b; Cuisenaire 1999;
Danielsson 1980], explained in Section 7.3, delayed the discovery of efficient EDT
schemes for a long time. Fast algorithms for computing the exact Euclidean DT in se-
quential computers have appeared since 1990, and new ones continue to be published
[Lotufo and Zampirolli 2001; Saito and Toriwaki 1994; Maurer et al. 2003; Hirata 1996;
Meijster et al. 2000; Boxer and Miller 2000; Eggers 1998; Ge and Fitzpatrick 1996;
Gavrilova and Alsuwaiyel 2001; Shih and Liu 1998; Cuisenaire 1999; Vincent 1991;
Breu et al. 1995; Mullikin 1992; Ragnemalm 1992; Felzenszwalb and Huttenlocher
2004; Shih and Wu 2004a, 2004b; Lucet 2007].

The reason for all the efforts at computing the DT with the Euclidean metric is that
it has many properties desirable in applications. It is radially symmetric, as distinct
from the other metrics used for DTs. This enables one to generate shape representa-
tions and properties that are virtually invariant to rotation, which is crucial for robust
recognition. Skeletons, or medial axes, for example, are extremely unstable to rotations
when non-Euclidean metrics are used. Furthermore, with non-Euclidean metrics the
shortest path or maximum width of shape may not correspond to the expected prac-
tical meaning. The Euclidean metric also has assets for [Cuisenaire and Macq 1999b;
Paglieroni 1992a; Borgefors 1986].
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Since 1980, very good approximations to the EDT have been proposed [Danielsson
1980], which indeed suffices for many applications. However, a minimum error in the
EDT can cause undesirable consequences in some applications. For example the skele-
ton obtained using approximated EDTs can get disconnected [Ge and Fitzpatrick 1996]
in many common cases, violating a very important property of this representation.
Furthermore, shortest path computation may accumulate unacceptable levels of error.
Another significant problem is due to the inexactness that occurs in the implementa-
tion of morphological operators [Cuisenaire and Macq 1999b], leading to violations of
basic properties most applications take for granted.

7. EDT ALGORITHMS

This section reviews conceptually important DT algorithms and describes state-of-the-
art Euclidean algorithms [Lotufo and Zampirolli 2001; Eggers 1998; Cuisenaire and
Macq 1999b; Saito and Toriwaki 1994; Maurer et al. 2003; Meijster et al. 2000] in
greater detail. It intends to provide an updated conceptual survey in order to organize
the area in view of recent advances.

The novel and uniform description of recent EDT algorithms constitutes a major
contribution of this work. Generally, the originals describe each algorithm separately
from the others, in a very general and concise way. There is seldom room for specific
examples or comparisons in the papers that are proposing a new method. For instance,
a new method is often proposed in arbitrary dimensions, non-convex domains, general
metrics and non-orthogonal lattices. Differently, in this text the intent is to present the
essence of each algorithm and to overcome difficulties found in reading and coding from
the originals. This is sought by restricting the concepts to 2D orthogonal grids and the
Euclidean metric. Further details and generalizations can be found in the originals.

The main methods were coded in C by the first author of this article. The code was
released under the GPL free software license, both in a C library and in the SIP toolbox
for Scilab [Fabbri http://distance.sourceforge.net].

7.1. Brute-Force EDT

The direct application of Definition 4.1 leads to the following EDT algorithm: for each
pixel p, its distance to each of the black pixels is computed. The distance map at p is
equal to the smallest of these distances. Obviously, if p itself is black, then it already
has its final value: zero distance.

Even for this trivial method, the number of operations depends not only on the image
size, but also on its content. Suppose the number of black pixels is k, thus the number
of white pixels is n2 − k. The number of comparisons performed by the algorithm is
k · (n2 − k), where 0 ≤ k ≤ n2. This function reaches its maximum at k = n2/2, hence
the maximum number of operations is n2/2 · (n2 − n2/2) = n4/4 = O(n4).

The minimum non-zero number of operations occurs for k = 1 or k = n2, that is, when
there is only one black or white pixel in the image. Therefore, the brute-force algorithm
runs in time �(n2). However, k is often a linear function of n. This occurs for images
obtained by sampling a continuous contour, for example. In this case, the number of
operations is �(n3). In summary, the brute-force algorithm is O(n4) (worst case), �(n2)
(best case), and typically around �(n3) for nearly one-dimensional objects. However, a
brute-force algorithm coded directly with two loops over the image will always run in
�(n4) time. This is dealt with by using two lists of indexes, one for the black pixels, the
other for the white. This requires n · n large integers or pointers. On the other hand,
the naive �(n4) algorithm can be performed in-place; it outputs directly in the input
image, saving memory.
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7.2. Efficient EDT Algorithms

The general principle to improve the efficiency of DT algorithms is to explore the re-
dundancy or locality of metric properties. The locality of the nearest site of each pixel,
for example is an important property of metrics in the continuous plane:

PROPERTY 1. For each point p, there is another point q, in a neighborhood of p, with
the same closest feature point. In other words, continuous Voronoi regions are always
connected in the continuous plane. Formally:

∃q ∈ N (p) | EV (p) = EV (q), ∀p ∈ R
2, ∀N (p), (3)

where N (p) denotes a neighborhood of p.
If p and q are restricted to integer coordinates (discrete grid), then Property 1. re-

mains valid for many metrics. This fact enables the use of discrete neighborhood-based
operations to compute the DT for such metrics. A related property that enables one to
compute the DT value of a pixel from the value of its neighbors is called regularity:

PROPERTY 2 [ROSENFELD AND KAK 1976; CUISENAIRE 1999]. A metric d is said to be
regular if, for every p and q such that d (p, q) ≤ 2, there exists an r, different from p and
q, such that d (p, q) = d (p, r) + d (r, q).

Rosenfeld and Pfaltz [1966] were the first to propose efficient DT algorithms, based
on local sequential operations. Other methods of this kind are reviewed in Section 7.4.

7.3. Sources of Error in EDT Computation

Most of the local algorithms do not compute the exact EDT, basically because Proper-
ties 1 and 2 are not valid for the Euclidean metric in discrete grids. The nearest Voronoi
site of a pixel p can be different from the nearest site of all its discrete neighbors for
this metric. This fact is expressed in other words by Property 3.

PROPERTY 3. Discrete Euclidean Voronoi regions are not always connected.

Property 3 is the main reason why exact EDT algorithms first appeared in the 1990s,
while the non-Euclidean ones have been around since 1966. Examples of Voronoi regions
with more than one 4- and 8-connected component are shown in Figure 4.

In Figure 4(a), the VR of pixel p2 is disconnected with respect to the 4-neighborhood.
Pixel q is closer to p2 than to p1 and p3, however none of its 4-neighbors is closer to p2.
In order to better illustrate the reason behind the disconnection in the VR, Figure 4(b)
shows the continuous Voronoi regions, in pale colors, on top of the sample points in
stronger colors. Each color represents the nearest pixel of each point in the plane.
Pixels equidistant to p1 and p2 are shown in black. Figures 4(c) and 4(d) show that a
similar problem occurs for a larger 3 × 3 neighborhood. The disconnection generally
occurs due to sampling of thin and slanted VRs that do not pass through any discrete
neighbor of a given pixel, although it passes on this pixel. Property 3 is the cause of
error in a class of DT algorithms formally defined in the following.

Definition 7.1. An N -EDT is defined as an EDT algorithm in which the final dis-
tance of each pixel is computed with respect to the same seed pixel of some pixel in a
fixed neighborhood N . The map generated by such an algorithm is denoted DN , and
whenever the subscript N is dropped, the notation denotes an exact map.

Examples of N -EDTs are the algorithms of Danielsson [1980] and Cuisenaire’s
PSN [Cuisenaire and Macq 1999b; Cuisenaire 1999; Falcão et al. 2004]. It is not
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(a) (b)

(c) (d)

Fig. 4. Disconnected Euclidean Voronoi regions for the 4-neighborhood, (a) and (b), and 8-neighborhood, (c)
and (d). Pixel q receives a wrong distance value if the algorithms assume 4-connectivity (a) or 8-connectivity
(c) for the discrete regions. In (b) and (d), the continuous and connected regions are shown in lighter shades,
with overlapping sample pixels. Pixels equidistant to p1 and p2 or to p1 and p3 are shown in black.

surprising that these algorithms present errors due to Property 3. For instance, in
Figure 4, if the nearest pixel to q is inferred from its neighbors, then a wrong distance
will occur for q, since none of them has the same closest pixel as q. In fact, the distance
to q will be computed with respect to an interest pixel different from the one that is
really the closest to it. Therefore, it is clear that DN (q) ≥ D(q), for every pixel q.

It can be shown that every N -EDT algorithm is not exact for every pixel with ex-
act distance greater than a certain value dc(N ). This distance depends only on the
neighborhood N being used. Formally:

PROPERTY 4 (BASED ON CUISENAIRE AND MACQ [1999b], AND CUISENAIRE [1999]). Given
a neighborhood N , there is a distance value dc(N ) such that:

DN (p) ≥ dc(N ) ⇒ DN (p) > D(p),

for some pixel p of some input image.

Assuming that the disconnection of Voronoi regions is the only source of error of
N -EDTs, then Property 4 can be extended to Property 5.

PROPERTY 5 (BASED ON CUISENAIRE AND MACQ [1999b]; CUISENAIRE [1999]). Given a
neighborhood N , there is a value d (N ) such that, for every pixel p:

DN (p) < d (N ) ⇒ DN (p) = D(p).
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Furthermore, there is a maximal value dc(N ) for d (N ) above which DN (p) is inexact
for some p and some image satisfying D(p) ≥ dc(N ). Moreover, dc(N ) increases as N
increases.

An upper bound for dc(N ) can be computed through an exhaustive search algorithm
described in page 60 of Cuisenaire’s [1999] dissertation. There is no open implemen-
tation of that procedure, to this date; the one performed by R. Fabbri, author of this
monograph, is available on the Internet [Fabbri http://distance.sourceforge.net].

Property 5 indicates that, given an image, its exact EDT can be computed by an N -
EDT with sufficiently large N . However, the direct application of this idea is inefficient
for large images, since the size of the required neighborhood can be too large. The
complexity of an optimal N -EDT is O(N ·m), where m is the number of elements of the
neighborhood, and N is the number of pixels in the image.

7.4. Classification of EDT Algorithms

The efficient and sequential EDT algorithms can be classified in terms of the order
in which the pixels are processed. In the so-called ordered propagation algorithms,
the smallest-distance information is computed starting from the seeds (0 distance)
and progressively transmitting the information to other pixels in order of increasing
distance. On the other hand, the raster scanning algorithms use 2D masks to guide
the processing of pixels line by line, top to bottom, then bottom to top. Independent
scanning schemes process each row of the image, independently of the other, and then
process each column of the result. This process is similar to separable linear transforms,
such as computing the Fourier transform of an image by a sequence of 1D transforms
in orthogonal directions [Brigham 1988]. This taxonomy of EDT algorithms into three
broad classes is similar to that of mathematical morphology algorithms [Zampirolli and
Lotufo 2000].

The EDT categories are not exclusive, specially the raster and independent scanning
ones. Many independent scanning algorithms were inspired by related raster scanning
methods, frequently through the decomposition of a 2D operation into separable one-
dimensional transforms. Furthermore, in a sense, all EDT algorithms perform propaga-
tion; what distinguishes ordered propagation algorithms is that they tend to visit pixels
in order of increasing distance from the source pixels. In what follows, the concepts and
algorithms of each class are reviewed, emphasizing Euclidean DTs.

7.4.1. Propagation Algorithms: Fundamental Concepts. One way to compute the DT is il-
lustrated by the grass-fire analogy. Imagine that the input binary image represents
grass fields, where 1 means ‘grass’, and 0 ‘non-grass’. Suppose that fire is startled in
the boundary of the grass fields. As the grass gets burned, the fire front gets progres-
sively distant from its initial position, until it extinguishes. It can be said that in time t,
the fire will be at some distance d from the regions initially without grass. By marking
the distance of the forefront in each pixel where it passes, the DT of the original binary
image is generated.

The grass-fire analogy is the basic idea behind ordered propagated algorithms. Start-
ing from the boundary pixels, they compute the distances of pixels from closest to far-
thest. The processing is performed only around the narrow band of pixels (fire front)
where a change in the current stored distance can occur. Figure 5 describes the funda-
mental process that performs ordered propagation.

The employment of a contour set restricts the processing to the narrow band where
the distances can change. This is the main reason why this procedure has a good po-
tential for efficiency. Note that no clue was given about which pixel must be removed
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Fig. 5. Fundamental procedure of EDTs by ordered propagation.

by Step 3a, or what neighborhood to use in Step 3b. Basically, the details of these steps
control the efficiency and correctness of the method; many pixels can be unnecessarily
updated if they are not adequately designed.

The algorithm in Figure 5 is similar to the so-called Dijkstra’s algorithm [Dijkstra
1959; Moore 1959; Bellman 1958]. In the latter, Step 3a removes the pixel with smallest
current distance among all the pixels of the contour set. In other words, the contour set
is a priority queue—a structure in which the “pop” operation removes the pixel having
smallest distance. The priority queue is the most important bottleneck of Dijkstra’s
algorithm. Its efficiency can be improved for DTs since, in digital images, the costs
(distances) are limited integers (e.g. squared Euclidean distance values). In this case, it
is possible to apply the optimizations of Dial [1969] and Ahuja et al. [1993] for Dijkstra’s
algorithm, using buckets for the priority queue. The buckets are sets of pixels with equal
cost. This is the basis for numerous fast algorithms that are explained later. It is also
the basis of numerical schemes to solve the Eikonal PDE—such as the fast marching
method—which are not covered in this article.

The bucket queue is a vector indexed by an integer distance value. Each bucket,
i, contains a list of the pixels having current distance d = i. The advantage of this
structure is that the pixels in the queue are naturally ordered, in the same way as in
the bucket sort algorithm [Aho et al. 1982]. To determine the least-cost pixel in Step 3a,
one simply increments the current distance (index of the bucket) until a non-empty
bucket is found.

We denote by PSN (Propagation by a Single Neighborhood) the generic Dijkstra’s al-
gorithm applied for the Euclidean metric (Figure 5), with a priority queue implemented
using buckets. The size of the neighborhood strongly affects the exactness of the results.

As stated in Section 7.3, for each neighborhood size there is a distance value up to
which the EDT generated by PSN will be exact. For larger distances, there can be errors
similar to Figure 4. Cuisenaire proposed a method to correct the PSN using propaga-
tions with larger distances only in certain places that possibly need it, as explained in
Section 7.11.

There are other optimizations that may be applied to ordered propagation algo-
rithms. First, the orientation of the neighborhood elements with respect to the cur-
rent pixel may be restrained, in order to minimize unnecessary updates. This is done
in Montanari [1968]; Verwer et al. [1989]; Ragnemalm [1992]; Eggers [1998]; and
Cuisenaire and Macq [1999b], though not in Falcão et al. [2004]. Second, the queue
never stores more than a certain maximum cost difference, so the bucket vector can
be circular [Falcão et al. 2004; Dial 1969], the index being the distance value mod-
ulo the maximum distance increment possible, which is dependent on the size of the
neighborhood.
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The Euclidean ordered propagation algorithms have the important asset that the
EDT can be computed only for pixels up to a given distance. This is particularly suitable
for implementing erosion and dilation by a disc of radius r. Propagation schemes also
have the advantage of being potentially more efficient for non-convex domains [Cuise-
naire 1999].

7.4.2. Propagation Algorithms: A Brief Historical Account. Montanari [1968] pioneered an
idea similar to the one in Figure 5 with bucket sort to compute the DT, and the medial
axis with a metric that approximates the Euclidean. He also devised a relevant result
about the direction in which the propagation should occur to minimize the deviation
from the Euclidean metric.

In 1986, Piper and Granum [1987] proposed a FIFO (first-in-first-out) strategy for
the contour set: Step 3a in Figure 5 removes the pixel that has been in the queue longer.
This is a well-known breadth-first search. Unfortunately pixels can be updated more
than once in this scheme—up to once per seed pixel in some cases [Ragnemalm 1992].
The work of Piper and Granum also considered non-convex domains.

Verwer [Verwer et al. 1989], in 1989, proposed a non-Euclidean propagation method
that also implements the contour set using buckets. Ragnemalm [1992] extended it for
the Euclidean metric. Verwer argued that this type of propagation is better suited than
raster-scanning for DTs restricted to non-convex domains.

Ragnemalm [1992] used a propagation scheme with a circular queue and yet an-
other strategy for Step 3a of Figure 5. A threshold variable holds an upper bound for
the distance values of all the pixels to be processed in the vicinity of the current con-
tour set. Pixels whose distances are greater than this value are kept in the contour
set for the next iteration. After each iteration, this upper bound is increased by the
maximum increment implied by the neighborhood being used. Ragnemalm states that
this scheme removes almost all the multiple updates, as shown by some experiments
[Ragnemalm 1992]. However, Cuisenaire [1999] says that some pixels can be updated
more than once—up to once per feature pixel in some cases—which implies O(n3) com-
plexity. The reason behind multiple updates, as also happens with other methods such
as Eggers’ [1998], is that the propagation is ordered by the chessboard metric instead
of the Euclidean.

Sharaiha and Christofides [1994] proposed a DT by propagation, explicitly formulated
with graph theory and solved by a variation of Dijkstra’s algorithm. This idea was
recently extended for the Euclidean metric and generalized to other problems in image
analysis, forming a unified approach called the Image Foresting Tranform (IFT) [Falcão
et al. 2004].

The IFT states various image analysis concepts as graph problems, giving to them
a unified formalism and a single efficient solution: Dial’s implementation of Dijkstra’s
algorithm. Reference [Fabbri 2004] provides a didactic explanation of the main concept
of the IFT, and how to compute EDT by this approach. Up to this date, the EDT by IFT
is equivalent to the PSN algorithm and therefore, is not exact. However, in principle
it can be made exact by use of multiple neighborhoods using Cuisenaire’s ideas (cf.
Section 7.11). The IFT has the advantage of being readily applicable to compute other
entities related to EDTs, such as watershed segmentation, skeletonization, and many
others. This fact provides a theoretical link between propagation-based EDT and other
image analysis algorithms. On the practical side, the multi-purpose nature of the IFT
makes it a useful toolbox to have, by solving many problems at once in addition to the
EDT. We have implemented the method based on the original authors’ code and made
it available to the public [Fabbri http://distance.sourceforge.net].
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In this work, two recent propagation EDTs were empirically evaluated: the methods
of Cuisenaire [Cuisenaire and Macq 1999b] and Eggers [1998]. They are described in
Sections 7.11 and 7.12, respectively.

7.4.3. Raster-Scanning Algorithms. Rosenfeld and Pfaltz [1966, 1968] proposed the first
sequential DT algorithms by raster scanning with non-Euclidean metrics. They pro-
posed cityblock and chessboard metrics, as well as hexagonal and octagonal metrics to
approximate the Euclidean DT.

Many authors improved the idea of raster scanning to better approximate the Eu-
clidean metric with little overhead [Montanari 1968; Borgefors 1984, 1986; Akmal Butt
and Maragos 1998]. The work of Borgefors [1984] reviews those algorithms and pro-
poses the chamfer DTs, which have been in widespread use. Chamfer metrics are regu-
lar and are defined by local masks. The weights of these masks are chosen to minimize
the deviation from the Euclidean DT. Chamfer DTs require two raster scans in the
image, in the same style as the original algorithm by Rosenfeld and Pfaltz. Further
improvements on the chamfer DTs of Borgefors were also proposed [Akmal Butt and
Maragos 1998].

Danielsson [1980] proposed an algorithm to generate the Euclidean DT in a similar
way as the raster scanning of the chamfer DTs. However, the propagated information
is the absolute value of the relative coordinates of the nearest feature pixel, instead of
only the relative distances. Therefore the method propagates two values in the masks,
instead of one, which is called vectorial propagation. Given these coordinates, the Eu-
clidean distances are easily computed.

Danielsson stated that, although his new EDT produces a correct result for most of the
pixels in an image, some errors are produced. To improve precision, he proposed the use
of larger masks. His algorithm with 4-neighborhood masks is called 4SED (Sequential
Euclidean Distance map), and the more precise method, which uses 8-neighborhood
masks is called 8SED. In Section 7.6, Danielsson’s algorithm is explained in further
detail, given its historical and conceptual importance.

Many improvements have been proposed for Danielsson’s algorithm. Ge and Fitz-
patrick [1996] proposed the signed distance map, meaning that the propagated data
are relative coordinates with sign; not only their absolute value as in the original SED.3
These algorithms are called 4SSED (Signed SED) and 8SSED.

Leymarie [Leymarie and Levine 1992] proposed an efficient implementation of
Danielsson’s algorithm, comparable in speed to the fastest chamfer DTs. Another im-
portant improvement was published by Ragnemalm [1993]—an implementation of
8SSED with only 3 separable raster scans (i.e., without scanning forward and back-
ward in each line). He also demonstrated that this is the least possible number of
scans.

Most of the exact EDTs by raster scanning are based on corrections of some SED
variation. Mullikin’s exact correction of the 4SED [Mullikin 1992] is considered by
Cuisenaire [1999] as O(n3) in the worst case. Another method, proposed by Shih and
Liu [1998], performs post-processing of 8SED to correct eventual errors. However, these
errors were underestimated, as pointed by Cuisenaire [1999].

Three recent methods seem to be the fastest exact EDTs by raster-scanning
[Cuisenaire and Macq 1999a; Shih and Wu 2004b, 2004a]. The first, proposed by Cuise-
naire, consists in performing a post-processing step on 4SED. The basic idea is to apply
corrections in pixels of the borders of the Voronoi regions generated by 4SED. In these

3The name “signed distance map” is sometimes used in the literature for the distance map of a contour in
which inside pixels have negative distances, and outside pixels positive distances.
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(a) (b)

Fig. 6. Example of the 1D transformation common to independent scanning EDTs. (a) The input image F ;
(b) its 1D EDT G along each row.

pixels, a simple method is proposed to check if the continuous VR generated discon-
nected pixels in the discrete grid. This is done by defining borders that include the
discrete VR, and limits the number of pixels to be verified.

The recent methods by Shih and Wu [2004b] consist in two raster-scans using a
3 × 3 neighborhood, and a dynamically adjusted neighborhood size [Shih and Wu
2004a]. The authors supposedly prove the correctness of the former algorithm and
show that its complexity is independent of image content; however no comparative
experimental study is performed. The latter algorithm is more recent, was proven
by the authors to be correct, and was shown in some experiments to be faster than
Eggers [1998].

Although raster-scanning EDTs seem to be the fastest ones available, there are some
disadvantages. First, many pixels might be processed more than once, especially by
SED, as pointed out by Ragnemalm [1992]. On the other hand, efficient ordered prop-
agation algorihms should avoid multiple updates, and process pixels only when they
receive their final value—which can result in less than two passes in the image. Sec-
ond, raster-scanning algorithms are more difficult to extend for non-convex domains,
usually requiring multiple passes before achieving the final values.

7.4.4. Independent Scanning Algorithms. Rosenfeld and Pfaltz devised yet another
approach for computing DTs, called independent scanning, or dimensional reduction.
Basically, the 1D DT is first constructed for each row (or column) independently; then
this intermediate result is used in a second phase to construct the full 2D DT. The first
stage is common to all Euclidean DTs based on independent scanning:

TRANSFORMATION 1. Given an input image F , the first transformation of independent
scan generates an image G defined by:

G(i, j ) = min
y

{( j − y)2 | F (i, y) = 0}. (4)

This corresponds to computing, for each pixel (i, j ), its (squared) distance to the clos-
est black pixel in the same line. This transformation is efficiently implemented by
performing a forward scan (left to right) followed by a backward scan in each line
of the image. The result of Transformation 1 for a simple image is illustrated in
Figure 6.

The non-trivial processing is in the second stage; this is where each algorithm applies
its specific strategy to generate the 2D EDT from the 1D line-wise transform.

The independent scanning approach was generalized by Paglieroni [1992a, 1992b]
for the Euclidean distance in addition to a broad class of distance functions satisfying
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certain properties. Basically, these important properties ensure that it is possible to
compose a 2D EDT using independent 1D scans along each direction. The second step
of Paglieroni’s method consists of up-and-down scans over each column, together with
tests to restrict the number of feature pixels to consider for each pixel. However, the
algorithm is O(n3) in the worst-case.

Specific properties of the Euclidean metric were exploited by subsequent methods in
order to restrict the number computations for each pixel during the second scan phase.
Based on these properties, there are clearly three subvariants of independent scanning
algorithms. One variant uses properties based on parabola intersections; another uses
a mathematical morphology approach; and the last class is explicitly based on fast
computation of Voronoi diagram intersections with image lines.

The fundamental idea behind the independent-scanning EDT methods is that only
O(n) feature pixels influence the distance map values along each line of the image.
Therefore, knowing which are the relevant pixels for each of the n lines, the whole 2D
EDT is computable in n · O(n) = O(n2) operations. The determination of the relevant
pixels for each row can be done in O(n) time, as shown by some papers that will be
reviewed in this article. Therefore, in principle, two O(n) steps are performed for each
row: the determination of relevant sites and the computation of the Euclidean dis-
tance from this information. Moreover, many methods intertwine the two O(n) steps to
improve non-asymptotic performance.

7.4.4.1. Methods Based on Parabola Intersections. An early independent scanning algo-
rithm [Kolountzakis and Kutulakos 1992], which had complexity O(n2log(n)), was
improved by Chen and Chuang [1994], making it linear in the worst case [Hirata
1996]. Saito and Toriwaki [1994] proposed a method based on similar ideas, explic-
itly using concepts based on parabola intersections to speed up the second scan, as
explained in Section 7.7. In spite of being fast for numerous images, the complexity
of this method has not been established. Some authors claim that it is O(n3) [Mau-
rer et al. 2003; Cuisenaire and Macq 1999b; Cuisenaire 1999] based on unpublished
experimental observations.

Similar EDT algorithms were more recently proposed by Hirata and Meijster [Hirata
1996; Meijster et al. 2000]. Meijster’s method is in general much faster than Saito’s, in
the informal opinion of some authors [Lotufo and Zampirolli 2003]. This is confirmed
by our experiments in Section 9.

7.4.4.2. The Mathematical Morphology Approach. Shih and Mitchell [1992] showed that
the EDT can be computed by a single gray-scale morphological erosion of the input
image. Later, Huang and Mitchell [1994] decomposed the structuring function into
a sequence of 3 × 3 structuring functions as the basis of their method. Lotufo and
Zampirolli improved this method by further decomposing the structuring element into
1D elements. As a result, their algorithm performs independent scanning, the first
stage being transformation 1. The second stage is performed using simple FIFOs for
the 1D propagation. More details are given in Section 7.10 and in their works [Lotufo
and Zampirolli 2001, 2003; Zampirolli 2003].

7.4.4.3. Methods Based on Voronoi Diagram Intersections. The EDT can be computed using
general O(n2 log n) Voronoi algorithms [Preparata and Shamos 1990; Fortune 1987].
However, since image points have integer coordinates, this efficiency can be reduced to
O(n2) [Breu et al. 1995; Ogniewicz and Kübler 1995].

A key fact is that the intersection of the VD of the seed pixels with a row or column
of the image can be efficiently computed. Breu et al. [1995] proposed the first EDT
algorithm using the construction of these intersections, and proved that it is O(n2) and
exact. Guan and Ma [1998] improved this method using properties of the Euclidean
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Table I. Some of the Main Advances Towards Efficient Sequential EDT Computation
Achievement Seminal References
The concept of DT [Rosenfeld and Pfaltz 1966]
Efficient approximate EDT (N -EDT) [Danielsson 1980]
Study of errors in N -EDT [Danielsson 1980]
Non-trivial exact algorithm [Yamada 1984]
Linear-time exact algorithm [Breu et al. 1995; Chen and Chuang 1994]4

Independent scanning EDT algorithm [Paglieroni 1992a]
Propagation algorithm (approximate) [Montanari 1968]
Propagation algorithm (exact) [Piper and Granum 1987]
EDT as single erosion [Shih and Mitchell 1992]
EDT as lower envelope of parabolas [Saito and Toriwaki 1994]
Linear-time EDT from Voronoi diagram [Breu et al. 1995]

Fig. 7. Masks used in 4SED (left) and 8SED (right).

metric while maintaining a slightly different representation for the intersection of the
VD with each line of the image. The recent method by Maurer et al. [2003] is an im-
provement on both of these previous methods, as will be explained in Section 7.8. Its
complexity and correctness have been formally proved.

7.5. Summary of Main Advances

The main advances in the area of exact Euclidean distance transforms are summarized
in Table I.

7.6. Danielsson’s Algorithm

One of the most widely used EDT algorithms is the one proposed by Danielsson in 1980.
Although it is simple and efficient, it is not exact. Given a binary image, the method
generates the vector5 EDT in 4 raster scans, using the masks of relative displacement
shown in Figure 7(left).

The vector distance map is initialized in the following way: if the pixel (i, j ) is black,
D(i, j ) = (0, 0), and I (i, j ) = (∞, ∞) otherwise. The value ∞ is a number greater than
the maximum possible displacement in the image (e.g., number of rows or columns).
Starting on top, the map is scanned by moving mask 1 from left to right in each line,

4The first manuscript was submitted on July 1993, while the second on August 1993.
5see Section 4.2.
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Fig. 8. Example of Transformation 2 at a pixel (i, j ).

and mask 2 from right to left in the same line. In each white pixel p, the vectors in the
mask are added to the corresponding values in the distance map and the new value of
p is defined as the minimum of these sums. Masks 3 and 4 are subsequently moved
line-by-line from right to left and vice-versa, respectively, starting from the bottom. It
is recommended for the reader to try each of these steps in a small numerical example.

This algorithm is called 4SED (Four-point Sequential Euclidean Distance transform).
The name refers to the fact that 4-neighbors are inspected by the masks. Although this
algorithm generates an EDT without drastic numerical errors, it is not exact. This is
due to Property 3, described in Section 7.3. To improve accuracy, larger masks can be
used, such as those in Figure 7(right). For these masks the algorithm is called 8SED.
However, it is also not exact for sufficiently large distance values. In fact, as seen in
Section 7.3, for any neighborhood size there is a distance value for which an error can
occur in the corresponding EDT.

7.7. Saito’s Algorithm

Saito and Toriwaki [1994] devised an algorithm to produce the EDT of a k-dimensional
image using k transformations, one for each coordinate direction. For 2D images,
distance values are first computed along each row (1st transformation), as described
in Section 7.4.4. These values are then used for computing minimal distances along
each column (2nd transformation). Using the notation of Section 7.4.4:

TRANSFORMATION 2. Starting from G (of Transformation 1) the 2nd transformation of
Saito generates an image H, which is the distance map of F :

H(i, j ) = min
x

{G(x, j ) + (i − x)2}. (5)

Figure 8 illustrates Transformation 2. Note that the squared Euclidean distance be-
tween two pixels is defined as the squared vertical distance plus the squared horizontal
distance. After Transformation 1, every pixel (x, j ) of column j has the value G(x, j ),
which is the squared distance between (x, j ) and the nearest black pixel in the same
row. Adding to G(x, j ) the vertical distance between (i, j ) and (x, j ), (i − x)2, one finds
the 2D distance between (i, j ) and the nearest pixel to (x, j ) in row x. Taking the min-
imum of the results for all lines x, H(i, j ) will be the distance from (i, j ) to the nearest
seed pixel.
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Fig. 9. High-level description of Maurer’s EDT.

(a) (b) (c)

Fig. 10. In (a) there is the VD of all sites represented by solid dots. Sites marked in gray are not relevant
for computing the EDT within the gray line, since their VR do not intercept this line. The sites marked in (a)
are discarded to generate (b), keeping only the closest sites along each column. In (b) the marked sites are
removed, which do not pass a certain test of bisector intersection. In (c), there is the VD of the relevant sites.
The intersection of the complete VD (a) with the line is not altered in the partial VDs (b) and (c).

Saito and Toriwaki implement Transformation 2 using a downward scan followed
by an upward scan in each column of G. During the downward scan, for each pixel
(i, j ) one applies a test to restrict the number of pixels ahead over which distance
minimization is performed. The upward scan proceeds in a similar fashion. More details
of this algorithm can be found on the original paper [Saito and Toriwaki 1994].

7.8. Maurer’s Algorithm

The original paper by Maurer et al. [2003] is an improvement of the method by
Breu [Breu et al. 1995], and extends it for any dimension, and more general metrics.
This section attempts a more conceptual description, since it is not necessary to give
the general theory in detail. Maurer’s EDT is summarized in Figure 9.

The first step is the same as for the other independent scanning algorithms, as seen
in Section 7.4.4. However, for explanation purposes it is convenient to perform 1D EDTs
vertically instead of horizontally. The non-trivial computation lies on the second stage.

A key fact of this method is that the intersection of the Voronoi diagram with a row
of the image can be efficiently computed, represented, and queried. This is due to the
following important fact.

PROPERTY 6. Few sites influence the distance map in a row of the image. More specif-
ically, only O(n) Voronoi sites have tiles that intersect any given row of a n × n image.

Figure 10 illustrates this fact. Given the O(n) nearest sites to any given row, then
for each pixel of this row one queries the nearest site and computes the distance to
it. Doing this for all the n rows results in O(n2) operations. This is basically how this
optimum complexity is achieved by Breu and Maurer.

The determination of which sites are relevant for a row R comprises two
restrictions:
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Fig. 11. The Voronoi region of v does not intercept line R if ûvx ≥ v̂wx .

Fig. 12. 2D EDT by Maurer for a line of the image, given its relevant sites.

(1) Discard any site that is not the nearest of its column to pixels in R. This information
is provided by the column-wise EDT. In Figure 10(a), the sites circled in gray were
removed using this criterion, yielding the VD in (b).

(2) Let u, v and w be three of the remaining sites such that ux < vx < wx (abscissae).
Let ûv be the intersection of the bisector between u and v with row R, and let v̂w
be defined analogously, as shown in Figure 11. It is easy to see that the Voronoi
region of site v will not intercept line R if ûv is to the right of ûv, that is, ûvx ≥ v̂wx .
Figure 10(b) shows the sites that were removed using this property; the VD of the
remaining sites are shown in Figure 10(c).

With regards to line R, nothing differs from the VD with all the sites, Figure 10(a), to
the partial VD of Figure 10(c). Once the relevant sites are found for R using the above
restrictions, it is easy to determine the final EDT for the pixels in this line.

The relevant sites can be indexed only by the order in which they appear from left
to right: s1, s2, . . . , sm, with m < ncols and s1.x < s2.x < · · · < sm.x. Such ordered sites
also implicitly represent the intersection of the VD with line R; since si is to the left of
si + 1, then RV (si) constrained to R is also to the left of RV (si + 1) in R, for i = 1 . . . m.

Given this set of relevant sites ordered by column, the EDT in line R is generated
in O(ncols ) by the algorithm in Figure 12. Running the algorithm in Figure 12 for each
line, it is clear that this query stage of Maurer is O(n2) for an n × n image. Since the
site-removal stage is also O(n2), the final algorithm is O(n2).

The 1D EDT is used both to eliminate irrelevant sites and to compute d (p, si) in the
procedure of Figure 12 in the following way: d (p, si) = E DT1D(p) + (px − i)2. It is the
same principle used in Transformation 1 of Saito’s algorithm described in Section 7.7.

7.9. Meijster’s Algorithm

The method of Meijster et al. [2000] follows the same concepts as mentioned in the
description of Saito’s algorithm in Section 7.7, the difference being that distance
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minimization in the second step is performed in a more efficient way. Suppose the
first step has been performed row-by-row. In a first pass on column j , their algorithm
represents the lower envelope of parabolas fi(x) = G(i, j ) + (x − i)2 explicitly by their
intersections, where G is defined in Transformation 1 (Section 7.4.4). This is a method
for obtaining the boundary of Voronoi regions of the black pixels constrained to column
j of the image, as described in Section 7.8.

Meijster’s algorithm is similar to Maurer’s algorithm, as confirmed by our empirical
tests reported in Section 9. In fact, the authors of Meijster’s method state in another
publication [Hesselink et al. 2005] that they had rediscovered Hirata’s method [Hi-
rata 1996], and that in their opinion Maurer’s algorithm is a rediscovery of Hirata
as well. Maurer, however, clearly derives from the algorithm by Breu et al. [1995],
as mentioned in Section 7.8. It turns out that Hirata [1996] was inspired by (and
cites) both Breu’s algorithm for constructing the Voronoi diagram and Saito’s idea
of lower-envelope of parabolas. We also note that Meijster’s method differs from Hi-
rata’s in that it computes the lower envelope of the parabolas without explicit use of a
stack.

7.10. Lotufo-Zampirolli’s Algorithm

This section describes the method of Lotufo-Zampirolli, whose ideas are based on gray-
scale mathematical morphology [Serra 1982]. Shih and Mitchell [1992] showed that the
EDT can be computed using gray-scale erosion of the image by the following structuring
function:

be(x) = −d2
e (x, O),

where O is the origin and d2
e (p, q) is the squared Euclidean distance. The input image

must have an infinity value wherever the distances are to be computed (white pixels).
This infinity value is a number greater than every (squared) distance to be found in
the image, for example the length of the diagonal plus one.

This result enables the use of fast mathematical morphology algorithms to compute
the exact EDT. Two concepts are commonly used in the design of efficient morphological
algorithms: decomposition of structuring elements and erosion by propagation. They
form the essence of Lotufo-Zampirolli’s EDT.

Shih and Mitchell showed that the structuring element, be, can be decomposed in the
following way:

bi =
[−4i + 2 −2i + 1 −4i + 2
−2i + 1 0 −2i + 1
−4i + 2 −2i + 1 −4i + 2

]
be = b1 ⊕ b2 ⊕ b3 . . . ,

where the origin of bi is marked in boldface and ‘⊕’ is the Minkowski sum [Serra 1982].
Therefore, due to a property of mathematical morphology, the EDT can be written in
terms of successive erosions:

εbe ( f ) = · · · εb3 (εb2 (εb1 ( f ))).
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In Lotufo-Zampirolli, the structuring element is further decomposed, resulting in 1D
elements in the north (N), south (S), east (E), and west (W) directions:

bNi =
[−2i + 1

0

]
, bEi = [

0 −2i + 1
]

,

bSi =
[

0
−2i + 1

]
, bWi = [−2i + 1 0

]
be = · · · ⊕ bN2 ⊕ bN1 ⊕ · · · ⊕ bS2 ⊕ bS1 ⊕ · · ·

· · · ⊕ bW2 ⊕ bW1 ⊕ · · · ⊕ bE2 ⊕ bE1 . (6)

For this reason, and by the idempotence property of mathematical morphology [Serra
1982], the distance transform can be computed by first eroding each column by
bN1 , bN2 , . . . until stability (the column does not change), and subsequently eroding
the columns by bS1 , bS2 , . . . followed by the erosion of the lines by bE1 , bE2 , . . . , and by
bW1 , bW2 , . . . . The algorithm uses two queues of pixels, effectively performing 1D prop-
agation to concentrate computation on the pixels that change from erosion to erosion.
Further details can be found in the original paper [Lotufo and Zampirolli 2001].

7.11. Cuisenaire’s Propagation Using Multiple Neighborhoods

The EDT method proposed in 1999 by O. Cuisenaire and B. Macq [Cuisenaire and
Macq 1999b; Cuisenaire 1999] basically adds a correction stage to the PSN algorithm
described in Section 7.4.1. As seen in Section 7.3, the exact EDT can be computed by
the PSN using a sufficiently large neighborhood. Since this can be costly, Cuisenaire
proposes that after a 4-neighborhood PSN, propagation using larger neighborhoods is
performed only in places that might need it. As explained below, such places are points
in the boundaries of Voronoi regions that may be 4-disconnected with other pixels of
the same region, causing errors.

7.11.1. First Stage: Propagation Using a Fixed Neighborhood. The PSN algorithm proposed
by Cuisenaire has some peculiarities relative to the description given in 7.4.1. Each node
of the contour set stores a point p = (px , py ) and the relative distance dp = (dpx , dpy ),
of the nearest source pixel. The vector dp is used to determine the distance of the
neighbor of the current pixel p to the nearest source of p in the following way. For
n ∈ N , the neighbor of p is given by q = p + n, and its distance to the nearest source
of p is ‖d p + n‖2 = (dpx + nx)2 + (dpy + ny )2. Figure 13 describes Cuisenaire’s PSN
with these details. For the sake of comprehension, the reader should compare it to the
general propagation procedure (Figure 5).

In practice, step 2 initializes the contour set with the boundary pixels, that is, the
white pixels having at least one black 4-neighbor. Such pixels are unit distance from the
set of white pixels, and therefore are inserted in bucket(1), while the current distance of
step 3 starts at 1. Therefore, the trivial propagation of the pixels having zero distance
to unit distance is explicitly performed in the initialization step, avoiding one insertion
and propagation cycle.

It is possible to determine whether all the buckets are empty in step 4 of Figure 13
only by testing a small predetermined number of the last buckets up to the bucket
d [Cuisenaire 1999]. For the 4-neighborhood it suffices to test if the last 2

√
d + 1 are

empty, since ‖dp + n‖2 ≤ (
√

d + 1)2 = d + 2
√

d + 1.
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Fig. 13. Cuisenaire’s PSN.

7.11.2. Second Stage: Correction Using Multiple Neighborhoods. During PSN, the method
verifies if a pixel p has propagated minimum distance information to a neighbor. If p
is near the boundary of an N -connected Voronoi Region, then it will not propagate to
any neighbor, since they are closer to other sites and, therefore, are outside of p’s VR.
It is only at these nonpropagating pixels that propagation using larger neighborhoods
might be necessary: as noted by Cuisenaire and explained in the following.

Disconnected Voronoi regions cause distance errors, for example in the simple 4-
neighborhood propagation, as discussed in Section 7.3 and illustrated in Figure 4(a).
To correct this type of error, one can use a larger neighborhood on the boundary of
the 4-connected VR to recover longer-range connectivity. In Figure 4(a) it is sufficient
to propagate the pixel between p2 and q with an 8-neighborhood to correct the map.
However, for other images, an error like in Figure 4(c) can occur. Again, the idea is to
use a larger neighborhood, for example 5 × 5, in the pixel marked with distance 116 in
Figure 4(c). The method by Cuisenaire is an efficient realization of this idea [Cuisenaire
and Macq 1999b; Cuisenaire 1999].

As described in Section 7.3, the EDT for a neighborhood N (N -EDT) is correct for
every distance smaller than a predetermined value dc(N ). Furthermore, the distance
value dnp(p) of a nonpropagating pixel p leading to an error is well-defined for a given
distance N . In other words:

PROPERTY 7. For each neighborhood N , there exists a distance dnp(N ) such that:
D(p) ≥ dnp(N ) if and only if for some image, p is not propagated during the N -EDT
and has generated a disconnection error in its Voronoi region.

In simple terms, dnp(N ) is the minimum distance value for which a nonpropagating
pixel leading to an error can occur in the N -EDT. Thus not every nonpropagating
pixel in a N -EDT needs a larger neighborhood—only those with a distance greater
than or equal to dnp(N ). Therefore multiple propagation can stop for every pixel with
sufficiently small distance.

The value of dnp for a neighborhood N can be computed by an exhaustive search al-
gorithm, in the same way that dc is determined (see Section 7.3). It is worth noting that
this algorithm for dnp(N ) was vaguely described by Cuisenaire [Cuisenaire and Macq
1999b; Cuisenaire 1999]. A C language implementation was devised for this survey and
is now part of an open source library [Fabbri http://distance.sourceforge.net]. Table II
shows some values of dc and dnp for various neighborhoods. The relative positions in
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Table II. Nearest Errors and Nonpropagating Positions for Various Neighborhood Sizes
Neighborhood Closest Error Closest Non-Propagator

k Nk Relative Position dc Relative Position dnp

1 4-neighbors (2,2) 8 (1,1) 2
2 3 × 3 (12,5) 169 (10,4) 116
3 5 × 5 (25,7) 674 (22,6) 520
4 7 × 7 (48,10) 2404 (44,9) 2017
5 9 × 9 (72,12) 5328 (67,11) 4610
6 11 × 11 (108,15) 11889 (102,14) 10600
7 13 × 13 (143,17) 20738 (136,16) 18752
8 15 × 15 (192,20) 37264 (184,19) 34217
9 17 × 17 (238,22) 57128 (229,21) 52882

10 19 × 19 (300,25) 90525 (290,24) 84676
11 21 × 21 (357,27) 128178 (346,26) 120392
12 23 × 23 (420,29) 177241 (408,28) 167248
13 25 × 25 (500,32) 251024 (487,31) 238130
14 27 × 27 (574,34) 330632 (560,33) 314689
15 29 × 29 (667,37) 446258 (652,36) 426400
16 31 × 31 (768,40) 591424 (752,39) 567025
17 33 × 33 (841,41) 708962 (824,40) 680576
18 35 × 35 (972,45) 946809 (954,44) 912052
19 37 × 37 (1054,46) 1113032 (1035,45) 1073250
20 39 × 39 (1200,50) 1442500 (1180,49) 1394801
21 41 × 41 (1312,52) 1724048 (1291,51) 1669282
22 43 × 43 (1452,55) 2111329 (1430,54) 2047816
23 45 × 45 (1575,57) 2483874 (1552,56) 2411840
24 47 × 47 (1680,58) 2825764 (1656,57) 2745585
25 49 × 49 (1862,62) 3470888 (1837,61) 3378290

which an error can occur and of the nonpropagating pixel are also shown. Moreover N1
denotes the 4-neighborhood, and Nk is the 2k − 1 × 2k − 1 square neighborhood, k > 1,
listed in the first two columns of Table II.

The values in Table II were generated by our exhaustive search implementation.
The values are identical to those published by Cuisenaire in his paper [Cuisenaire
and Macq 1999b] for all lines up to k = 16. The lines k > 16 are published for the
first time in the present manuscript. It is worth noting that dnp in line 16 equals the
value in Cuisenaire’s paper [Cuisenaire and Macq 1999b], but differs from the value in
Cuisenaire’s dissertation [Cuisenaire 1999]. Since both Cuisenaire’s code and his paper
use the same value as ours (567025), the dissertation value (567027) is probably a typo.

Cuisenaire’s PMN algorithm consists of successive propagations with increasing
neighborhoodsNk , where necessary. Given a nonpropagating pixel p, which remained in
the priority queue after the N1-EDT, p will be propagated using the smallest necessary
neighborhood to correct the associated errors. For example, if DN1 (p) = 3000, one can
verify in Table II that p shall be propagated again using a 9×9 neighborhood for an exact
EDT, since 3000 is between 2017 and 4610. In other words, of all nonpropagating pixels
p in an Nk-EDT, the ones to be propagated with Nk+1 are those satisfying dnp(Nk) ≤
DNk (p) < dnp(Nk+1). Figure 14 describes the multiple-neighborhood EDT in detail.

Cuisenaire states that his algorithm apparently remains O(n2) even in the worst
case, based on experiments [Cuisenaire and Macq 1999b; Cuisenaire 1999]. However,
this conjecture has not been proved to this date. It is important to note that the precom-
putation of distances dnp(Ni) is time-consuming even for moderate values of i. However,
these values need only be tabulated once and for all.

In a variant of PMN, called PMON (propagation by oriented neighborhoods), prop-
agation is restrained only to the necessary directions [Cuisenaire 1999]. It is not yet
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Fig. 14. Cuisenaire’s multiple neighborhood propagation (PMN).

clear if this is more efficient than PMN, due to the added cost of having to compute
the propagation directions. Some empirical tests by Cuisenaire suggest that PMON is
faster than PMN for sufficiently large images.

7.12. Eggers’ Algorithm

Eggers introduced two ordered propagation techniques, denoted d∞ and d1, that re-
strict the propagation to Euclidean shortest paths [Eggers 1998]. Only d∞ is de-
scribed in this monograph, since it is analogous to d1 while having a better average
performance.

Eggers separates the contour set into two lists: L, storing the so-called main contour
pixels, and �, storing the minor contour pixels. The neighbors of a given pixel are ordered
as below:

N3(p) N2(p) N1(p)
N4(p) p N0(p)
N5(p) N6(p) N7(p)

For each contour pixel, one associates a direction index k, which points to the neighbor
Nk(p) to which p shall propagate information. Instead of propagating distance informa-
tion for all eight neighbors, the main contour pixels propagate only to three neighbors
Nk(p), Nk+1(p) e Nk−1(p), where k is the direction index of the pixel. The minor contour
pixels propagate only to Nk(p). Furthermore, the direction indexes of the main contour
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Fig. 15. Eggers’ d∞ propagation.

(a)

(b)

(c)

Fig. 16. First three iterations of Eggers’ sufficient propagation d∞. Bold values indicate pixels in the contour
set. Main contour pixels are those propagating to three pixels, and the minor are those propagating only to
a single one. An indirect pixel Nk(p) of a main pixel p having directional index k will be a main pixel during
the next iteration. The remaining ones will be minor pixels.

pixels are odd (indicating indirect neighbors), while the indexes of the minor pixels are
even.

Figure 15 describes the d∞ propagation, the overall steps being the same as in
Figure 5 of Section 7.4.1. In practice, four dynamic lists are used, two for each iter-
ation. The lists L1 and �1 store the main and minor contour pixels, respectively, while
L2 and �2 store the same information but for the next iteration.

Figure 16 illustrates the d∞ propagation process for a single pixel of interest. Note
that the information in p is propagated to a pixel q through the shortest Euclidean path
from p to q, consisting in d1(p, q)−d∞(p, q) indirect neighbors followed by 2 ·d∞(p, q)−
d1(p, q) direct neighbors. This propagation process is called d∞ since, starting from a
single black pixel p, the contour set at iteration m + 1 is the circle with radius m in the
d∞ metric.
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Fig. 17. Some of the test images used in this article. (a) one pixel in the corner; (b) half-filled image; (c)
white circle inscribed in the image; and (d) images with varying number of randomly placed white pixels
(this particular example has 90% white pixels).

8. METHODOLOGY

This work tested and compared the main state-of-the-art EDT algorithms, denoted
by: Maurer [Maurer et al. 2003], PMN (or Cuisenaire) [Cuisenaire and Macq 1999b],
Saito [Saito and Toriwaki 1994], Lotufo-Zampirolli [Lotufo and Zampirolli 2001],
Meijster [Meijster et al. 2000], and Eggers [Eggers 1998]. Some of these algorithms de-
pend on the size of the image and on the number of feature pixels, others do not depend
on the number of feature pixels, or depend on some other factor such as maximum dis-
tance to be computed and geometric factors such as the configuration of Voronoi regions.

8.1. Test Images

In order to study the speed and exactness relative to the content and size of the image,
tests using the following images are proposed in this work:

(1) A single black or white pixel in an image corner. The EDT, in this case, produces the
largest and smallest possible distances for a given image size: n

√
2 (the diagonal)

and 1, respectively. Moreover, the number of pixels receiving a non-zero distance is
also the largest and smallest possible, respectively. For scanning algorithms, not all
the scans are necessary to compute the EDT for this type of image, depending on
the chosen corner having the distinct pixel. This test case was also used by Maurer
et al. [2003].

(2) A white disk inscribed in the image. This test was suggested by Saito [Saito and
Toriwaki 1994] and also by Cuisenaire [Cuisenaire and Macq 1999b]. It is a good
test for exactness due to the following fact. The Voronoi diagram of the pixels along a
circle is very regular in the continuous plane, and consists of a series of radial lines;
and the influence zones are very thin triangular regions, whose tips meet at the
center of the circle. However, the discrete Voronoi regions in this case are irregular,
specially near the center of the disk. Furthermore, the larger the circle, the denser
is the sampling of the Voronoi regions, however these regions will be thinner.

(3) Half-filled image. This is the worst case of the brute force algorithm, as described
in Section 7.1. This image also has a uniform distance distribution: there is approx-
imately the same number of pixels for each different distance.

(4) Random pixels, comprising 1%, 2%, 5, 10, 20, . . . , 90, 95, 98 and 99% of the image.
This shall provide an idea of the performance of the algorithms relative to the
number of feature pixels. The brute force EDT will take longer for 50% feature
(white) pixels, as analyzed in Section 7.1. Therefore, this is the generally expected
behavior to be compared to the other algorithms.

(5) A line of black pixels turning from 0 ◦ to 90 ◦ through the center of the image. The
worst case of the propagation algorithms occurs for non-horizontal, non-vertical and
non-diagonal orientations, as explained by Ragnemalm [1992]. This test case was
also used by Cuisenaire in some of his comparisons.
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Fig. 18. Orientation tests: (a) digital line in different directions; and (b), (c) randomly generated squares
with varying numbers, sizes and orientations.

Fig. 19. Test image composed of edge maps of real images.

(6) Random squares. These images are generated by randomly choosing the centers
and sizes of black squares rotated by θ ∈ [0, 90◦]. The squares are filled and plotted
into the image until the black pixels add up to a percentage value p. An image
of this type shall be denoted by the pair (p, θ ). This test was proposed by Eggers,
since it is based on a synthetic image having more similarity to real images with
some orientation. For assessing performance relative to orientation, this test is more
realistic than a single rotating line.

(7) Binary images of real objects. Borders from the Lenna image obtained by thresh-
olding the response of an edge detector were used. Lenna was chosen since
it has been universally used as an impartial benchmark for image analysis
algorithms.

In addition to the tests already described, a possibility for a future work would be to
extract measures from the images to characterize the performance of the algorithms
with respect to the shape of the input object, as described in the objectives of this work
(Section 2).

8.2. Test Procedure

The tests were performed as described in Figure 20. Test results were stored in text
files in readable and well-structured form, as to enable data extraction using utilities
based on regular expressions. Performance plots were generated in Scilab, using tables
assembled from such files.

In Step 4 of Figure 20, the reference DT for large images was Maurer’s algorithm,
which proved to be consistently exact in preliminary tests.

Memory usage is not assessed in the present work. However, this task is not
very difficult to be performed in Unix systems. One way to measure memory per-
formance at run-time is using system calls, or more easily, using specialized util-
ities. Another way is to use Linux’s ‘/proc’ filesystem. Yet another option is to

ACM Computing Surveys, Vol. 40, No. 1, Article 2, Publication date: February 2008.



2:30 R. Fabbri et al.

Fig. 20. Main procedure for performance and exactness evaluation.

use libraries or utilities that substitute malloc calls by routines that track the
memory usage of a process. Examples of these are the libraries and utilities from
Ccmalloc [Biere http://www.inf.ethz.ch/personal/biere/projects/ccmalloc] and Valgrind
[Seward http://valgrind.kde.org].

As the empirical results were being obtained, theoretical studies were performed,
and possible proofs of observed properties were attempted; and conversely, theoret-
ical results and conjectures were experimentally verified. Some examples of specific
questions answered by this work are:

—Does the recent method of Cuisenaire [Cuisenaire and Macq 1999b] have linear com-
plexity even for images that had not been tested by the original author? For questions
of this kind, if the experiments show evidence of positive answers, it is suggested that
they be mathematically proven in a future work. For negative answers, errors in the
implementation and theory were sought.

—Is Saito’s algorithm [Saito and Toriwaki 1994] O(n3)? Is the worst case frequent in
practice? Is it really slower than Meijster’s algorithm?

—Is the recent algorithm by Maurer [Maurer et al. 2003] really fast and exact as the
author claims?

8.3. Other Properties Assessed in This Work

In addition to time performance and exactness, another important criterion for com-
paring EDT algorithms is the difficulty of implementation. A worst-case O(n3) method
may be preferable if it is reasonably fast in the average case and easier to code. In order
to assess the ease of implementation, the number of lines of the implementation of each
EDT by the same person can be used, as well as a listing of the data structures being
used. However, the real analysis of this criterion has to be personal, with arguments
reasonably rooted in the programming experience.

9. EMPIRICAL RESULTS

9.1. Initial Considerations

The tests were performed on a laptop with a Pentium M 2GHz processor, 1GB
RAM, and a Gentoo Linux OS with kernel v2.6.17. The programs were built us-
ing GCC v4.1.1, and the source code is freely available on the Internet [Fabbri
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Fig. 21. Performance for images with a single black pixel in the upper-left corner.

http://distance.sourceforge.net] as a companion to this article. For automation of the
tests, Bash scripts were used to coordinate the execution of C programs and to gener-
ate text files reporting test results. The display of empirical data was also programmed
in the Scilab environment [INRIA www.scilab.org]. Moreover, timing was coded using
the ANSI-C clock function, which measures the CPU time, yielding reliable test results
even under timesharing.

In this section, the most relevant results will be analyzed, focusing on large images,
i.e., n × n with n in the order of 103. The complete results and test framework are
available on the Web [Fabbri et al. 2006].

9.2. Running Time Results

9.2.1. Images with a Point in the Corner. As shown in Figure 21, the best result occurs for
Maurer, while Saito and Eggers perform similarly to each other, followed by Lotufor-
Zampirolli, and Meijster. Meijster was the slowest independent scanning algorithm for
this case (about 50% slower than Maurer6). Cuisenaire is the slowest method, being
6 times slower than Maurer. Another interesting fact is that Eggers does well in this
test, being an O(n3) propagation algorithm, outperforming Cuisenaire, which is also a
propagation algorithm supposedly O(n2).

9.2.2. Circle Images. The best methods in this case were Meijster and Maurer, which
were very close to each other (0.062s and 0.063s resp. for the 1000 × 1000 image), as
shown in Figure 22. Cuisenaire and Saito come not too far behind. Eggers and Lotufo-
Zampirolli are much slower, both performing about 8 times slower than Meijster.

9.2.3. Lenna’s Contours. As shown in Figure 23, again Meijster and Maurer display
the best timing, followed by Saito and Lotufo-Zampirolli. The slowest methods were
Eggers and Cuisenaire, both approximately 2 times slower than Meijster.

6In this text, this kind of figure refers to the largest image of the test, unless otherwise stated.

ACM Computing Surveys, Vol. 40, No. 1, Article 2, Publication date: February 2008.



2:32 R. Fabbri et al.

eggers

lotufo−zampirolli

maurer

meijster

pmn

saito

+
×
⊕

♦
◊
Δ

100 200 300 400 500 600 700 800 900 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Test Image: circle
Size: n x n

n

t 
(s

)

Fig. 22. Performance for images containing an inscribed white circle.
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Fig. 23. Performance for Lenna’s contours.

9.2.4. Half-Filled Images. As shown in Figure 24, this is the best relative performance
of Eggers and the worst of Maurer and Meijster, among all types of image content
we considered. Eggers is followed by Lotufo-Zampirolli and Saito, which are close to
each other, then comes Cuisenaire, Meijster, and Maurer, also close to each other. The
propagation algorithms were better than raster-scanning algorithms for this image.
Although Maurer and Meijster were among the best methods for many different types
of input, in this case they were both about 2 times slower than Eggers.
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Fig. 24. Performance for the half-filled image.

9.2.5. Random Pixels. The percentage of interest pixels (black pixels) proved to have
a great impact on the performance of the methods. As shown in Figure 25, the speed
of almost every algorithm is roughly proportional to the number of white pixels (i.e.,
where distance values are to be computed). Eggers is the only exception, presenting
peak time about 60%, with its best performance still for the case of a single white pixel.
This peak about 60% is similar to the behavior of the brute-force algorithm, which has
its peak in 50%.

For 100×100, the fastest algorithms are Saito and Lotufo-Zampirolli, above 20%, and
PMN and Saito, below 20%. Saito remains very close to Lotufo-Zampirolli and Meijster
very close to Maurer, as the image size increases.

Maurer’s algorithm (and technically Meijster’s) is the slowest below 20%, while
Cuisenaire is the slowest above 70% for all images larger than 100 × 100.
However, Meijster and Maurer are the steadiest (slight advantage to Meijster), followed
by Lotufo-Zampirolli. Eggers and PMN were the most unstable of all, slightly improving
for large images.

9.2.6. Turning Line. All the methods were shown to depend on orientation. As shown
in Figure 26, Meijster, Maurer, and PMN were the most stable (i.e., independent of
orientation). The least stable methods were Eggers, Lotufo-Zampirolli, and Saito. As
the image size increases, PMN and Maurer apparently get stabler, since they get a lot
faster compared to the other methods. However, in reality the stability remains the
same, as can be seen in the zoom of the plot of Figure 26(d) in Figure 27.

The performance disparities among each of the methods is larger for slopes different
from 0◦ and 90◦, especially for angles between 60◦ and 70◦. As can be expected, the
time curves are symmetric with respect to 90◦. Clearly, Saito has its worst performance
at 60◦. Eggers has peaks of time around 20◦ and 75◦, and peaks around 0◦ and 45◦.
PMN, in turn, is slowest for 45◦ (differently than Eggers), and is fastest at 0◦. Lotufo-
Zampirolli displayed maximum time around 55◦ and best performance at 0◦. Curiously,
Maurer has a minimum around 90◦ and a constant maximum between 0◦ and 40◦.
This asymmetry is due to the choice of processing columns before lines, instead of lines
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Fig. 25. Performance of EDT methods for images with varying percentage of white pixels at random loca-
tions. Plots are shown for sizes 100 × 100 (a), 1000 × 1000 (b), 2000 × 2000 (c), and 4000 × 4000 (d).

first. The other raster-scanning algorithms also present this line/column asymmetry,
but did not show considerable performance difference between horizontal and vertical
orientations. Meijster proved to be more stable than Maurer, displaying a virtually
constant profile with respect to orientation.

For all sizes greater than 100 × 100, Meijster and Maurer were the fastest. The evo-
lution of time curves relative to the image size shows evidence that Lotufo-Zampirolli,
Eggers, and Saito are not linear-time.

9.2.7. Random Squares. All the plots for this test, in Figures 28 and 29, show a strong
dependency of EDT algorithms with respect to the percentage of pixels. The only ex-
ceptions are Meijster’s and Maurer’s methods, which perform similarly to each other
for large enough images, and have displayed much more stability than the other meth-
ods, under any orientation. However, Meijster and Maurer were seldom the fastest.
For high percentages of black pixels, Maurer is the slowest method, followed closely
by Meijster, irrespective of orientation. This can be verified, for example, from the
plots of 95% percent in Figure 29. Under any fixed orientation, all the other meth-
ods are faster for a larger number of black pixels, since the fixed-angle curves are
decreasing.
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Fig. 26. Performance of EDT algorithms for images with a single line in different angles. Plots are shown
for sizes 100 × 100 (a), 1000 × 1000 (b), 2000 × 2000 (c), and 4000 × 4000 (d).

The time curves were all symmetric with respect to 45◦. Moreover, for a high percent-
age of interest pixels (i.e. black pixels), all methods get less dependable on orientation.
This reflects the fact that varying the orientation of an image having few white pixels
has little effect on the distribution of distances.

As in the line test, Lotufo-Zampirolli and Eggers were the methods most dependent
on orientation. Cuisenaire was strongly dependent on percentage, specially for angles
near 0◦. For large images, Lotufo-Zampirolli displayed the worst mean at 45◦ and Eggers
at 15◦, except for high percentages of black pixels.

9.2.8. Exactness. All methods were confirmed to be exact for all test images and the
test procedure of Figure 20 from Section 8.

9.3. Discussion

The results are very diverse, no method being the fastest in all tests. An example of
this diversity is that, although the test case of Lenna’s edges is in a sense similar to
random images having a low percentage of black pixels, the empirical results are quite
different. This can be seen by comparing the plots of the Lenna test (Figure 23) with
those of random pixels and squares, shown in Figures 25 and 28. Moreover, it is curious
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Fig. 27. Zoom of the plot from Figure 26(d).

that the peak of Eggers at 60% white pixels in Figure 25 does not occur for the image
of random squares for any fixed angle (Figure 28).

The speed of the methods is proportional to the number of interest pixels (black
pixels)—inversely proportional to the number of white pixels (where the distances are
computed). This can be seen, for instance, in the plot for random pixels from Figure 25,
where all curves have a tendency to increase with the percentage of white pixels. This
behavior can also be verified in Figure 28, where the curves are decreasing with the
number of black pixels.

The constant factors in the time function of an algorithm can be reduced by optimizing
the implementation. Therefore, the plots have to be analyzed mainly through the shape
of the curves, and less through absolute timing values. Furthermore, special attention
has to be given to performance for large images, in which case constant factors have
less influence when comparing algorithms with different complexities.

All angle tests were symmetric with respect to 90◦, it being unnecessary to test for
angles outside the 0◦–90◦ range. However, no method displays symmetry with respect
to 45◦ in the 0◦–90◦ range, except for Eggers, which displayed such symmetry for the
cases of a rotating straight line and random squares.

9.4. Overall Performance of Each Algorithm

The performance of each algorithm is discussed in the following.

9.4.1. Performance of Cuisenaire. The worst case for Cuisenaire, among all tests, oc-
curs for images having many white pixels. This fact is visible from the results for
images with a single black pixel (Figure 21), and in the plots for varying percent-
age (Figures 25 and 28): the more white pixels, the worse the performance of Cuise-
naire. This algorithm seems to be the most dependent on the number of interest
pixels.

The method has been shown to be relatively stable with respect to orientation, only
being behind Meijster and Maurer. As shown in Figures 26 and 29, PMN performs best
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Fig. 28. Performance of EDT methods for random squares, varying percentage of black pixels (abscissas)
and fixing orientation at 0◦ in (a) and (b), 15◦ in (c) and (d), and 45◦ in (e) and (f), for 100 × 100 images (left
column) and 3000 × 3000 (right column).
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Fig. 29. Performance of EDT methods for images of random squares, varying the angle (abscissas), and
fixing the percentage of black pixels at 15% in (a) and (b), 50% in (c) and (d), and 95% in (e) and (f), for
100 × 100 images (left column) and 3000 × 3000 (right column).
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for 0◦ or 90◦, getting worse as the angle gets far from these values. Moreover, it is the
only method besides Maurer and Meijster that displays linear complexity relative to
the size of the line image and of the random squares.

Cuisenaire’s algorithm was relatively hard to implement due to the complicated data
structures involved. This is generally true of propagation algorithms.

9.4.2. Performance of Maurer. Maurer’s algorithm (as well as Meijster’s) proved to be
the most stable in terms of image content, as shown in Figures 25, 26, 28, and 29. Still,
the method does display some dependency on image content, especially in the test of
the turning line. As shown in Figure 27, its best performance occurs at 90◦, curiously
better than at 0◦. However, this dependency on orientation is not verified in the test of
random squares, as shown in Figure 29.

Maurer’s algorithm is also technically the fastest for the majority of the images:
Lenna’s borders (Figure 23); inscribed circle (Figure 22); corner pixel (Figure 21); and
the majority of orientations for the line test (Figure 26). It was among the top in the
squares test with low percentage of black pixels (Figures 28 and 29). However, for some
cases it can do worse than all the other algorithms. This occurs for random images with
high percentages of interest (black) pixels, as shown in Figures 25 and 28, and for the
half-filled image as well, though in these cases Maurer was not far behind the others.

Implementing Maurer was relatively time-consuming, as it requires one to spend
time to digest the paper before extracting a specific 2D EDT implementation out of the
general pseudocode given there.

9.4.3. Performance of Meijster. Meijster was virtually the best performing method of
all, together with Maurer. Technically, the only real difference between Meijster and
Maurer is for the image with a single black pixel (Figure 21), where Maurer superseded
Meijster. For all the other tests, the methods performed similarly, with a slight advan-
tage to the current implementation of Meijster in terms of speed and stability relative
to image content. Moreover, this algorithm, together with Saito’s, was the easiest to
implement.

9.4.4. Performance of Saito. Saito’s method performs well on average, never being the
worst method in any test, and was the easiest to code (together with Meijster’s). It was
among the top three fastest algorithms in many cases, performing especially well on
the random pixels test, as shown in Figure 25. However, in its worst case—the slanted
line at 60◦—it gets 40 times slower than Maurer.

The line test (Figure 26) shows that Saito’s time-complexity is really worse than
O(n2). This is clear in large images, for which Saito’s curve gets far from Maurer and
Meijster. Nevertheless, for all other tests the method seemed to be O(n2), since the
evolution of its time curve relative to image size follows those of the other O(n2) algo-
rithms.

The method is very dependent on the orientation of image content, if compared to
Maurer, Meijster, and Cuisenaire. The worst performance occurs for angles around 60◦
for both the straight line test (Figure 26) and the squares test (Figure 29). Saito is
also very dependent on the number of feature pixels. In the random pixels test, the
larger the image, the sharper the time curve gets relative to the percentage of white
pixels (Figure 25), approximating Cuisenaire’s curve. The performance was superior for
many black pixels. A similar behavior is verified for the random squares test, shown in
Figure 28.
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9.4.5. Performance of Lotufo-Zampirolli. This method displayed an average performance
compared to the others. It is reasonably stable to percentage of interest pixels, as
shown in Figure 25. The exception is the random squares test around 45◦, as shown in
Figure 28(f).

Lotufo-Zampirolli’s algorithm is clearly not linear for the line test under non-
orthogonal directions. Moreover, it was the second most dependent method on the ori-
entation of the line and squares tests, the worst performance occurring around 45◦. In
this case, the performance was worse than the other methods, as shown in Figure 28(f),
except above 85% black pixels. The observed tendency in similar plots for every tested
size leads to the conclusion that, for images larger than 3000 × 3000 at 45◦, Lotufo-
Zampirolli was the worst method for practically all percentages of black pixels.

Implementing Lotufo-Zampirolli’s algorithm was relatively harder than the remain-
ing independent scanning algorithms, even though their pseudocode is quite clear.

9.4.6. Performance of Eggers. Eggers is the fastest algorithm for the half-filled image,
and is second best for the similar image of random squares with 50% of feature pix-
els at 0◦. For the image with a single black pixel, the algorithm is not far from the
best ones. However, it is the worst method (along with PMN) for Lenna’s contours,
for the inscribed circle, and for some images of the other tests, as analyzed in the
following.

Eggers was the method most heavily dependent on image content, for both the num-
ber of interest pixels and orientation. In the test of random pixels, the algorithm displays
peaks of time around 50% white pixels, but greatly improving for low percentages and
for percentages around 90%. However, above 90% white pixels, the method displays
another drop in efficiency, as shown in Figure 25. The same behavior was not confirmed
in the squares test: for every fixed angle, the curve was monotonous, the time being
lower for low percentages of white pixels. The method was also the less stable relatively
to orientation. For the straight line test, it displayed maximum speed around 0◦ and
45◦, being very slow outside this interval, specially for angles between 60◦ and 80◦. This
fact was also confirmed in the squares test.

The method of Eggers is easier to implement in our opinion than Cuisenaire’s PMN,
but harder than the other methods.

10. CONCLUSION

In this article, the main Euclidean Distance Transform algorithms in the literature
were reviewed, tested, coded, and compared. The empirical tests clearly reflect the
large performance variability of EDT algorithms in terms of image content. No method
has shown to be definitely faster in all cases.

The methods of Meijster [Meijster et al. 2000] and Maurer [Maurer et al. 2003] proved
to be the best options overall among the considered methods. Perhaps Meijster’s method
should be preferred, being slightly faster in most cases and easier to implement. Both
Meijster’s and Maurer’s algorithms displayed excellent performance in the majority of
tests, and clearly were the methods least dependent on image content. They also work
in any dimension, and readily enable label propagation. The devised open-source imple-
mentation will also contribute to the widespread adoption of these EDT algorithms. The
novel conceptual description of Maurer’s theory, provided in this article, will hopefully
contribute to its understanding.

Saito’s algorithm can be considered a good alternative to Meijster’s. Although it is
O(n3), it has shown an excellent relative performance on all tests different than the
worst case. Furthermore, it is easy to code (slightly easier than Meijster’s in our opin-
ion), and its extension to 3D is immediate.
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The big surprise in this study was the performance of Cuisenaire’s PMN, which was
not as good as expected. However, an important advantage of Cuisenaire’s algorithm is
the immediate possibility of generating the EDT up to a maximum distance only.

The algorithms of Eggers and Lotufo-Zampirolli were inferior to Saito. Both are heav-
ily dependent on image content, and all tests confirm their O(n3) complexity. In general,
the independent-scanning algorithms proved to be faster and easier to implement than
ordered propagation.

This survey is expected to be widely useful for the computational geometry and vision
communities, since the EDT is the foundation for many other operators, techniques,
and applications.
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