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Abstract. The relationship between the orientation and curvature of
projected curves and the orientation and curvature of the underlying
space curve has been previously established. This has allowed a disam-
biguation of correspondences in two views and a transfer of these prop-
erties to a third view for confirmation. We propose that a higher-order
intrinsic differential geometry attribute, namely, curvature derivative, is
necessary to account for the range of variation of space curves and their
projections. We derive relationships between curvature derivative in a
projected view, and curvature derivative and torsion of the underlying
space curve. Regardless of the point, tangent, and curvature, any pair
of curvature derivatives are possible correspondences, but most would
lead to very high torsion and curvature derivatives. We propose that the
minimization of third order derivatives of the reconstruction, which com-
bines torsion and curvature derivative of the space curve, regularizes the
process of finding the correct correspondences.

1 Introduction

The key bottleneck to successful reconstruction of structure from multiple images
is the disambiguation of correspondences. A large body of literature has been
developed based on correlating unorganized and often sparse feature points by
matching some aspects of the local region surrounding the feature [1–3], and
oriented edges [4–7] to disambiguate correspondences. A number of criteria such
as smoothness, uniqueness, ordering, limited disparity, and limited orientation
disparity, have been used to deal with the inherent ambiguity. However, these
can break down, especially with wide baseline, with multiple nearby structures,
or when discontinuities and branching structures exist [8]. An alternative ap-
proach to using unorganized features is to use longer curve segments such as
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lines, conics, and planar and non-planar higher order algebraic curves to disam-
biguate correspondences [9–14], but a large number of views of the same curve
are required (seven views are required of an electric wire in [14].)

The idea that the differential geometry of curves can be used to correlate
structure in multiple images was presented in the work of Ayache and Lust-
man [15], who proposed a trinocular constraint for matching line segments aris-
ing from polygonal edge linking. The main idea is that a 3D point and its tangent
reconstructed from a pair of potentially corresponding points and tangents in
two views determine a point and tangent in a third view, which can be compared
to observations; see also [16–18]. Robert and Faugeras [19] extended Ayache’s
method of transferring points and tangents from two views to a third to include
curvature: 3D curvature and normal can be reconstructed from 2D curvatures
at two views, which in turn determine the curvature in a third view. This leads
to improved precision and density in the reconstruction since curvature provides
an additional constraint and reinforces figural continuity in propagating strong
hypotheses to neighboring curve samples. This allows then to discard the use of
heuristics such as the ordering constraint [20]. Schmid and Zisserman [21] also
derived a formula for transferring curvatures from two views to a third, using a
projective geometry formalism in which the osculating circle is transfered as a
conic.

Li and Zucker [8] derived formulas for the curvature of a projected curve from
the curvature of a 3D space curve. They also derived a system of linear equations
for reconstructing 3D curvature from 2D, as previously done by Faugeras [19],
but with a different proof. Their stereo method assesses the compatibility of two
neighboring point-tangent-curvature matches according to a cost, which is then
minimized through relaxation labeling. While tangents and curvatures can be
reconstructed, torsion cannot be constrained. Therefore their process minimizes
the torsion of the resulting 3D curve, assuming real-world curves tend to have
low variation.

The motivation underlying the use of differential geometry in matching curves
across views can be described as follows. Consider a curve γ1(s) in image 1,
where s is some length parameter, and which is a projected view of a space
curve Γ (s).3 Assuming calibrated cameras are available, what is the space of
curves γ2 which is a projected view of Γ in another camera? In this space, what
are the most likely curves to arise? Which curves occur so infrequently that they
can be discarded without penalty? The use of such a prior, which is necessary
to disambiguate correspondences, can be potentially applied to (i) the shape
of the second curve γ2, (ii) the variations in depth of the reconstructed space
curve Γ from γ1 [22], or (iii) the shape of the space curve. It is our position
that limiting the shape of γ2 or the depth variation of Γ would both rule out
some practically occurring situations, thus leading to significant errors. The least
restrictive regularization can be realized by imposing a smoothness constraint
directly on the space curve Γ .

3 We assume Γ does not change with views, as arising from a sharp ridge or a re-
flectance edge



The idea of directly regularizing the space curve as a way of constraining the
correspondences was proposed by Li and Zucker [8], who suggested minimizing
total torsion and by Kahl and August [23], who suggested minimizing total cur-
vature. The idea of minimizing total curvature is an extension of “elastica” priors
on 2D curves [24, 25]. One can view this as limiting second-order derivatives of
the curve. Consider the Taylor expansion of Γ to the third order:

Γ (S̃) = Γ 0 + S̃ T 0 +
S̃2

2
K0N0 +

S̃3

6

[
−K2

0T 0 + K̇0N0 + K0τ0B0

]
+ O(S̃4) ,

(1.1)

where S̃ is arc-length along Γ , (T 0, B0,N0) is the Frenet frame at point Γ 0,
K0, K̇0 τ0 are curvature, curvature derivative, and torsion, respectively. Then,
minimizing

∫ ‖Γ ′′(S̃)‖2 dS̃ gives the elastica in 3D. We will argue below that
this is too restrictive as it penalizes rapidly turning space curves, and it is more
appropriate to minimize

∫ ‖Γ ′′′(S̃)‖2 dS̃. The third derivative motivates con-
sidering the relationship between torsion and curvature derivative of the space
curve with the curvature derivative of the projected curve.

The idea that the use of curvature alone is too restrictive can be illustrated
by the problem of curve completion in 2D, where the completion of the gap be-
tween a near pair of point-tangents (edgels) requires more than a circle (constant
curvature). It was shown in [26] that an Euler spiral segment (in which curvature
derivative is constant but not necessarily zero) can interpolate any pair of point-
tangent pairs, resulting in intuitive completion curves. In the case of multiview
reconstruction, a hypothetically corresponding pair of point-tangent pairs in an-
other image can be interpolated in each image using the Euler spiral, resulting
in both curvature and curvature variation, which when reconstructed give cur-
vature, curvature derivative, and torsion, i.e., the full elements of a third-order
approximation are available, and ‖Γ ′′′(s)‖ can be used as the regularization
term. The requirement that curvature derivatives across views be related to re-
constructed curvature derivative and torsion of the space curve is a motivation
of this paper.

Li and Zucker extended the idea of cocircularity of a pair of edge elements,
used in a relaxation framework for edge linking, to compatibility of two point-
tangent (edge) pairs in stereo, with one pair in one view (potentially) corre-
sponding to a pair in another view. They use an osculating circle approximation
for the 3D point underlying the first edge correspondence. The compatibility of
a match pair is taken as the degree in which this planar local approximation is
consistent with the other match. By doing this, they argue, torsion of the recon-
structed space curve, which accounts for its non-planarity, is being minimized.
The idea of minimizing torsion is obtained by taking the dominant element in
the Taylor expansion along each of the directions of the Frenet frame separately.
Specifically, reorganizing the terms of Equation 1.1 by direction:

Γ (S̃) = Γ 0 +

(
S̃ − S̃3

6
K2

0

)
T 0 +

(
S̃2

2
K0 +

S̃3

6
K̇0

)
N0 +

S̃3

6
K0τ0B0 +O(S̃4) ,

(1.2)



and taking only the dominant terms in each one, they get:

Γ (S̃) ≈ Γ 0 + S̃T 0 +
S̃2

2
K0N0 +

S̃3

6
K0τ0B0 , (1.3)

which also appears in [27, 28]. We believe that the independent approximation
along each direction ignores the interaction among them: third order changes
are along a vector not typically aligned with B0, see Equation (1.1). Curvature
and its derivative play roles along with torsion in the reconstruction. In Sect. 3,
we show how to obtain a full third-order Taylor expansion for the space curve
given third-order expansions in its perspective projections.

The above ideas can also be intuitively expressed by taking a sequence of
ordered points along a curve in one view and a corresponding sequence on a cor-
responding curve in another view. Assuming that the points are closely spaced, a
pair of points approximates the curve tangent, a triplet approximates curvature,
and a quadruplet of points approximates curvature derivative. We can illustrate
the interaction of correspondence ambiguity among n-tuples of ordered points
in two views as follows.

Consider a pair of images to be matched, taken from arbitrary viewpoints.
Given a point in one image, Fig. 1(a) illustrates the ambiguity in selecting a
match in the right image, which is along the epipolar line and its vicinity (a
neighborhood around the epipolar line arises from discretization, calibration,
and other errors, but is not drawn here for simplicity). Points (A1, A2, . . . , An)
are all equally good matches for A. Consider now a neighboring point B to A

Fig. 1: Matching with differential constraints.



on the curve, as in Fig. 1(b). Given a particular selection for A’s corresponding
point, say A1, any selection for B’s mate is possible. Certain choices, however,
are more likely than others based on limiting orientation disparity [29, 2, 30].
Although limiting the choice of tangents does reduce ambiguity, it also rules out
a portion of practically occurring cases, thus leading to errors.

Similarly, as in Fig. 1(c), given corresponding points for both A and B,
any selection from the epipolar line corresponding to C is a suitable match for
C, but again certain choices are more likely. Since three nearby points deter-
mine curvature, limiting curvature disparity or limiting the total curvature [23]
of the reconstructed curve places a measure of suitability for each potential
match. However, in analogy to [26], where penalizing total curvature of com-
pletion curves (elastica) can lead to unintuitive completion curves, penalizing
total curvature could also lead to reconstruction errors in the vicinity of highly
curving space curves. Continuing this process by considering a fourth point D,
and given corresponding points for A, B, and C, as shown in Fig. 1(d), it is
again clear that all selections from the epipolar line corresponding to D are
theoretically possible, but most selections are extremely unlikely. Four nearby
points determine curvature derivatives in the image curve in each view, both in-
trinsic quantities. Limiting the third-order properties of the reconstructed curve
allows for a significant variety of space curves while regularizing the choice of
correspondences.

The above discrete picture illustrates the idea that placing shape priors on
low-order derivatives is limiting because they are broadly-tuned, while the prior
becomes narrowly-turned in higher-order derivatives. What limits the process is
the fact that computing high-order derivatives can be numerically challenging. In
our previous work, we have been able to compute third-order derivatives such as
curvature derivatives and torsion stably using ENO schemes [31, 32], see Fig. 2.
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Fig. 2: (From [31]). Curvature and torsion versus arc-length using ordinary difference
scheme (a), and using ENO scheme (b), using 100 points on a helix (K = 2 and τ = 4).

We should emphasize that attributing points with differential geometric sig-
natures such as tangents, curvatures, curvature derivative, etc., does not by itself
disambiguate correspondences using only two views. That these attributes pro-
vide no direct constraints in two views was shown for tangent and curvature



in [19], and it will be shown here for curvature derivative (which corresponds
to the space curve torsion). However, a constraint can be obtained in two ways.
One is when at least three views of the same point are available, in which case
tangents in two views determine the tangent in a third view [15, 19, 7], curva-
tures in two views determine the curvature in a third view [19, 21, 7], and, as
will be shown here, curvature derivatives in two views determine the curvature
derivative in a third view; see Sect. 3. Another way to impose a constraint is
when a pair of neighboring points on one curve can be found in correspondence
to another pair of points on a corresponding curve in another view, as discussed
above.

The main contribution of this paper is theoretical. First, we derive a relation-
ship between curvature derivatives of projected curves and curvature derivative
and torsion of the underlying space curve. Second, we show how the latter quan-
tities can be reconstructed from two views. Third, we show how curvature deriva-
tive in two views can determine curvature derivative in a third view. Finally, we
show how to relate parametrization of projected curves to each other and to the
parametrization of the space curve. In the process, we give new derivations for
the results of [8, 7] in a simpler way that easily generalize to higher orders.

2 Background and Notation

The multiple view formulation consists of n pinhole camera models as shown
in Fig. 3. All vectors are written with respect to a common, global frame with

Fig. 3: The projection of a space curve in n views.

origin O (the world coordinates). The i-th image, i = 1, . . . , n, has camera center



ci(cx
i , cy

i , cz
i ), unit focal vector F i, and focal length fi. For simplicity, without

loss of generality we assume fi = 1.4

A 3D space curve C is a mapping S 7→ C(S) from R to R3, where S is an
arbitrary parameter. The arc-length parameter along C is denoted by S̃. We
define Γ i := C − ci, namely the curve coordinates relative to a camera center.
We refer to the local Frenet frame of the space curve C by tangent T , normal
N , binormal B, and let K and τ denote its curvature and torsion, respectively.
Then, by classical differential geometry [33], we have:





G = ‖Γ ′‖

T =
Γ ′

G
N =

T ′

‖T ′‖ B = T ×N

K =
‖T ′‖
G

K̇ =
K ′

G
τ =

−B′ ·N
G

,

(2.1)

where v′ indicates differentiation of v with respect to an arbitrary parameter
throughout this paper. We use v̇ to denote differentiation with respect to arc-
length of the curve to which v refers to, depending on the context. The chain
rule relates v̇ and v′:

v′ = Gv̇ , (2.2)

using G = dS̃
dS . The Frenet equations are given by:



T′

N′

B′


 = G




0 K 0
−K 0 τ

0 −τ 0







T
N
B


 . (2.3)

Similarly, a 2D curve γi in image i is a mapping s 7→ γi(s) from R to R2,
where s is an arbitrary parameter and s̃ denotes the arc-length parameter. The
curve will have speed gi, tangent ti, normal ni, and curvature ki. All formulas in
Equations (2.1) and (2.3) apply also to γi by setting τ = 0. We drop the index
i on vectors related to any particular camera when the index is not necessary.

The space curve and a projected image curve are related by:

Γ (s) = λ(s)γ(s) , (2.4)

where λ is a positive scalar. Since the curve γ lies in the image plane with
normal F ,

(γ − F ) · F = 0 . (2.5)

Therefore,
{

γ · F = 1
Γ · F = λ ,

(2.6)

4 Since in theory we are working in global coordinates and with intrinsic measures, the
size and orientation of the retinas need only be explicitly specified when translating
image coordinates to world coordinates and vice-versa in the implementation.



which, by substituting in (2.4), gives

γ =
Γ

Γ · F . (2.7)

The latter formula shows how to project points using our notation (without any
change in the coordinate system). We also note that

{
γ(i) · F = 0

Γ (i) · F = λ(i) ,
(2.8)

where γ(i) is the ith derivative of γ, for any positive integer i. It is interesting
to note, for example, that λ is maximum or minimum when λ′ = 0 (near/far
points of the curve). From the second equation above, this leads to Γ ′ · F = 0,
thus T · F = 0 for near and far points (except at endpoints).Reminds me of Lagrange multipliers.

The reconstruction of a point on the space curve C from two corresponding
image curve points γ1 = (x1, y1, z1) and γ2 = (x2, y2, z2) can be obtained by
equating two expressions for C = Γ i + ci, with Γ i given by (2.4)

{C = c1 + λ1γ1

C = c2 + λ2γ2

thus

γ1λ1 − γ2λ2 = c2 − c1 (2.9)

or, more explicitly,




x1λ1 − x2λ2 = cx
2 − cx

1

y1λ1 − y2λ2 = cy
2 − cy

1

z1λ1 − z2λ2 = cz
2 − cz

1

It is well-known that this system of three equations in two unknowns λ1 and λ2

can only be solved if the lines c1γ1 and c2γ2 intersect. Also note that γ1 × γ2

is a normal to the epipolar plane, which is defined by three points c1, c2, and Γ .

3 Multiview Differential Geometry of Curves

We follow a direct route to relating the intrinsic entities between the space curve
and its perspective views. The main idea is to express Γ (i) first in terms of
the differential geometry attributes of C, namely T ,N ,K, K̇, τ , and, second,
using Γ = λγ, write Γ (i) in terms of the differential geometry attributes of γ,
namely t,n, k, k̇. In equating these two expressions we relate T ,N ,B, K, K̇, τ to
t, n, k, k̇. Our purpose is to eliminate the dependence on the parametrizations,
which means that our final expressions cannot contain unknowns g(i), G(i), depth
scalar λ, and its derivatives λ(i), for all i.



Lemma 1. The following equations relate T , N , B, K, K̇, τ , and G(i) to γ,
t, n, k, k̇, g(i), and λ(i):





GT = λ′γ + λgt

G′T + G2KN = λ′′γ + (2λ′g + λg′)t + λg2kn

(G′′ −G3K2)T + (3GG′K + G3K̇)N + G3KτB =

λ′′′γ + [3λ′′g + 3λ′g′ + λ(g′′ − g3k2)]t + [3λ′g2k + λ(3gg′k + g3k̇)]n

(3.1)

(3.2)

(3.3)

Proof. First, writing Γ (i) in the Frenet frame of Γ , we have:




Γ ′ = GT

Γ ′′ = G′T + G2KN

Γ ′′′ = (G′′ −G3K2)T + (3GG′K + G2K ′)N + G3KτB ,

(3.4)

(3.5)

(3.6)

which, when expressed with respect to the arc-length of Γ , i.e., G ≡ 1, yield:




Γ̇ = T

Γ̈ = KN
...
Γ = −K2T + K̇N + KτB .

(3.7)

(3.8)

(3.9)

Second, differentiating Γ = λγ gives:





Γ ′ = λ′γ + λγ′

Γ ′′ = λ′′γ + 2λ′γ′ + λγ′′

Γ ′′′ = λ′′′γ + 3λ′′γ′ + 3λ′γ′′ + λγ′′′ .

(3.10)
(3.11)
(3.12)

This can be rewritten using expressions for the derivatives of γ, i.e. γ(i), which
are obtained by the product rule of differentiation and Frenet equations:





γ′ = gt

γ′′ = g′t + g2kn

γ′′′ = (g′′ − g3k2)t + (3gg′k + g2k′)n .

(3.13)

(3.14)

(3.15)

Thus, Γ (i) can be written in terms of γ, t, n, k, k̇, λ(i), g(i):





Γ ′ = λ′γ + λgt

Γ ′′ = λ′′γ + (2λ′g + λg′)t + λg2kn

Γ ′′′ = λ′′′γ + [3λ′′g + 3λ′g′ + λ(g′′ − g3k2)]t

+ [3λ′g2k + λ(3gg′k + g3k̇)]n ,

(3.16)

(3.17)

(3.18)

where we used k′ = gk̇. Equating (3.4-3.6) and (3.16-3.18) proves the lemma. ut



Corolary 1 Using the arc-length S̃ of the space curve as the common parameter,
i.e., when G ≡ 1, we have:





T = λ′γ + λgt

KN = λ′′γ + (2λ′g + λg′)t + λg2kn

−K2T + K̇N + KτB = λ′′′γ + [3λ′′g + 3λ′g′ + λ(g′′ − g3k2)]t

+ [3λ′g2k + λ(3gg′k + g3k̇)]n ,

(3.19)

(3.20)

(3.21)

where the right hand side uses the notation v′ = dv
dS̃

and v̇ = dv
ds̃ .

We are now in a position to relate first-order differential attributes of the
space curve (G, T ) with those of an image curve (g, T ). Note from (3.1) or (3.19)
that T lies on the plane spanned by t and γ, i.e., T is a linear combination of
these vectors. An exact relationship is expressed bellow.

Theorem 2 Given the tangent T at Γ , when T is not aligned with γ, then the
corresponding tangent t and normal n at γ are determined by:

t =
T− (T · F )γ
‖T− (T · F )γ‖ (3.22)

n = εn̄, (3.23)

where n̄ = t× F and ε = ±1.

Proof. From Equation (3.1), we have:

T =
1
G

[λ′γ + λgt ]

=
1
G

[
(Γ ′ · F )γ + λgt

]
(3.24)

=
(

Γ ′

G
· F

)
γ + λ

g

G
t (3.25)

= (T · F )γ + λ
g

G
t , (3.26)

thus
λ

g

G
t = T− (T · F )γ (3.27)

and the result follows. The formula for the normal comes from the fact that it
lies in the image plane, therefore being orthogonal to both t and F . ut

Observe that the depth scale factor λ is not needed to find t from T . More-
over, when γ and T are aligned for a point on a segment of the curve, then
Equation (3.27) still holds, implying that g = 0 and t is undefined, i.e., that the
image curve will have stationary points and possibly corners or cusps. Station-
ary points are in principle not detectable from the trace of γ alone, but by the
assumption of general position these do not concern us.



A quantity that is crucial in relating differential geometry along the space
curve with that of the projected image curve is the ratio of speed of parametriza-
tions g

G (s). According to the following theorem, this quantity is intrinsic in that
it does not depend on either g(s) or G(s) at each arbitrary s.

Theorem 3 The ratio of speeds of the projected 2D curve g and of the 3D curve
G with respect to the same parameter is an intrinsic quantity:

g

G
=
‖T− (T · F )γ‖

Γ · F , (3.28)

i.e., it does not depend on the parametrization of Γ or of γ.

Proof. Follows from (3.27). ut
Corolary 4 The speed of an image curve in terms of the arc-length of the space
curve, and vice-versa, are respectively given by:

g(S̃) =
‖T − (T · F )γ‖

Γ · F , G(s̃) =
Γ · F

‖T − (T · F )γ‖ . (3.29)

Thus the arclengths of the image and space curves can be expressed as:

s̃(S̃) =
∫ S̃

S̃0

g(S̃) dS̃ , S̃(s̃) =
∫ s̃

s̃0

G(s̃) ds̃ . (3.30)

Proof. Set g(s̃) = 1 or G(S̃) = 1 in (3.28). ut
Corolary 5 Given two views of a 3D space curve the ratio of velocities in the
two views at corresponding points is given by:

g1

g2
=

λ2

λ1

‖T − (T · F 1)γ1‖
‖T − (T · F 2)γ2‖

. (3.31)

Proof. Follows by dividing expressions for g1
G and g2

G . ut
Note from Equation (3.27) that the vector T lies on the half-plane spanned

by t and γ, i.e., it is a linear combination:

T = at + bγ , (3.32)

with a ≥ 0. Thus the reconstruction of T from t requires one additional pa-
rameter since T is a unit vector. This can be provided from the tangent at the
corresponding point, as shown in the next theorem.

Theorem 6 Given tangent vectors at a pair of corresponding points, namely t1
at γ1 and t2 at γ2, the corresponding space tangent T at Γ is given by:

εT =
(t1 × γ1)× (t2 × γ2)
‖(t1 × γ1)× (t2 × γ2)‖

ε = ±1 (3.33)



whenever t1 and t2 are not both in the epipolar plane. The sign of ε can be found
by projecting εT onto the retinas and comparing to the orientation of t1 and t2
there. More explicitly, ε is such that the following inequations are satisfied:

{
[εT − (εT · F 1)γ1] · t1 > 0
[εT − (εT · F 2)γ2] · t2 > 0 .

(3.34)

c1

Fig. 4: 3D Tangent reconstruction from two views as the intersection of two planes.

Proof. From Equation (3.19) we have that T lies in two planes having normals
γ1 × t1 and γ2 × t2, as illustrated in Fig. 4. Formally:

{
T · (γ1 × t1) = 0
T · (γ2 × t2) = 0 .

(3.35)

Thus, when the two planes are not parallel, T must be proportional to (γ1 ×
t1) × (γ2 × t2), from which the formula follows. Furthermore, when the two
planes are parallel, they are equal to the epipolar plane since they will both pass
through Γ , c1 and c2. So there would be infinitely many possible space tangents,
solutions to the above system, that projects to the image tangents. ut

This theorem implies that any two tangents at corresponding points can be
consistent with at least one space tangent. Similarly, curvatures of the space
curve and of an image curve can be related, as shown by the next theorem.

Theorem 7 The curvature k of a projected image curve is given by:

k = |k̄|, where (3.36)

k̄ =
[
N − (N · F )γ

λg2
· n̄

]
K (3.37)



or, equivalently,

k̄ =
[

N · (γ × t)
λg2 n̄ · (γ × t)

]
K , (3.38)

where g = g(S̃) is given by (3.29), λ = Γ · F , and n̄ = t × F . The normal
orientation is chosen to be consistent with positive curvature 5:

n = sign(k̄) n̄ . (3.39)

Proof. From Equation (3.20), we have:

KN = λ′′γ + (2λ′g + λg′)t + λg2kn (3.40)

= (Γ̈ · F )γ + 2(Γ̇ · F )gt + λg′t + λg2kn (3.41)

= K(N · F )γ + 2(T · F )gt + λg′t + λg2kn . (3.42)

We can isolate k by taking the dot product of the last equation with n which gives
the curvature projection formula (3.36). Alternatively, taking the dot product
with γ × t also isolates k, giving the variant (3.38). ut
Theorem 8 The normal vector and curvature of a point on a space curve with
point-tangent-curvature at projections in two views (γ1, t1, k1) and (γ2, t2, k2) is
given by solving the following system in the vector NK:





(γ1 × t1) ·NK = n1 · (γ1 × t1)λ1g
2
1 k1

(γ2 × t2) ·NK = n2 · (γ2 × t2)λ2g
2
2 k2

T ·NK = 0 ,

(3.43)

where T , g1, and g2 are obtained by previous derivations.

Proof. Taking the dot product of (3.42) with γ × t, and applying the resulting
equation for two views, we arrive at the first two equations. The third equation
imposes the solution NK to be normal to T . ut

Note that formulas for the projection of 3D tangent and curvatures onto 2D
tangent and geodesic curvature appear in [34] and [35, pp. 73–75], but an actual
image curvature was not determined there. That the curvature of the space curve
is related to the curvature of the projected curve was derived in previous work [8,
19], but our proof is direct and much simpler. Moreover, our proof methodology
generalizes to relating higher order derivatives such as curvature derivative and
torsion, as shown below. Before we proceed, however, an explicit formula for
tangential acceleration will prove useful in proofs.
5 In this convention, the image curvature is always positive; the normal changes ori-

entation in going from convexities to concavities in order to assure this. This is
consistent with the approach in this paper of representing image curves as planar
curves embedded in 3D; their basic modeling is the same as space curves with zero
torsion. In effect, the approach is equivalent to using projective coordinates of 2D
points interpreted as 3D rays, but in an Euclidean fashion.



Theorem 9 The tangential acceleration of a projected curve with respect to the
arc length of the space curve is given by:

dg

dS̃
=

[N − (N · F )γ] · t K

λ
− 2g

T · F
λ

, (3.44)

or
dg

dS̃
=

KN · (γ × n)
λt · (γ × n)

− 2g
T · F

λ
. (3.45)

Proof. By taking the dot product of Equation (3.42) with t and isolating g′, we
get the first formula. The second expression is obtained by instead taking the
dot product with γ × n. ut

Theorem 10 The curvature derivative at a point of a projected image curve γ
is derived from the local differential geometry of the space curve as follows:

k̇ =
(K̇N + KτB) · (γ × t)

λg3n · (γ × t)
− 3k

(
T · F
λg

+
g′

g2

)
, (3.46)

where by our notation g′ = dg

dS̃
, and k̇ = dk

ds̃ , and K̇ = dk
dS̃

.

Proof. Taking the scalar product of (3.21) with γ× t, and using T · (γ× t) = 0,
we have:

(K̇N + KτB) · (γ × t) = [3λ′g2k + λ(3gg′k + g3k̇)]n · (γ × t) (3.47)

thus

3λ′g2k + λ(3gg′k + g3k̇) =
(K̇N + KτB) · (γ × t)

n · (γ × t)
. (3.48)

After isolating k̇, we use λ′ = dλ
dS̃

= Γ̇ · F = T · F to get the final formula. ut

This result shows how torsion and curvature derivative of the space curve are
related to curvature derivative of a projected image curve. The next theorem
shows the inverse problem, namely how to reconstruct torsion and curvature
derivative given a third order approximation of two image curves.

Theorem 11 Given point, tangent, curvature, and curvature derivative mea-
sures on two perspective projections of a space curve, the torsion and curvature
derivative at the corresponding point of the space curve can be obtained by first
solving the following system in V:





(γ1 × t1) ·V = [3g2
1k1T · F 1 + λ1(3g1g

′
1k1 + g3

1 k̇1)]n1 · (γ1 × t1)

(γ2 × t2) ·V = [3g2
2k2T · F 2 + λ2(3g2g

′
2k2 + g3

2 k̇2)]n2 · (γ2 × t2)
T ·V = 0 ,

(3.49)



with T , N , B, K, gi, g′i, and λi determined from previous derivations. Then,
the torsion τ and curvature derivative K̇ of the space curve are given by solving
for K̇ and τ from V = K̇N + KτB:





τ =
V ·B

K

K̇ = V ·N .

(3.50)

(3.51)

Proof. Apply Equation (3.47) for two views, letting V := K̇N + KτB. ut
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Appendix: Taylor Expansion of a Space Curve

The (geometric) Taylor expansion of Γ (s) for an arbitrary parameter S is

Γ (S) =Γ 0 + S G0T 0 +
1
2
S2

[
G′0T 0 + G2

0K0N0

]
+ (3.52)

1
6
S3

[
(G′′0 −G3

0K
2
0 )T 0 + (3G0G

′
0K0 + G3

0K̇0)N0 + G3
0K0τ0B0

]
+ O(S4) ,

where the subscript 0 indicates evaluation at S = 0. Therefore, where the sam-
pling space is small enough relative to the degree of fourth and higher order
variation of the space curve, we expect differential attributes at one sample to
predict the corresponding attributes at the adjacent sample. For the first order
geometry, we have:

T (S) = T 0 + ST ′
0 +

S2

2
T ′′

0 + O(S3)

= T 0 + S G0KN +
S2

2

[
(G′K + G2K̇)N −G2K2T + G2KτB

]
+ O(S3) .

Similarly, for second order geometry:




N(S) = N0 + S G(−KT + τB) + O(S2)

K(S) = K0 + SG0K̇0 + O(S2)

B(S) = T (S)×N(S) + O(S2) ,

(3.53)

(3.54)

(3.55)

and for third order:

τ(S) = τ0 + O(S) . (3.56)


