
"Globally Optimal Stratified Autocalibration"

Chandraker, Argawal, Kriegman, Belongie

Paper Summary Ricardo Fabbri LEMS 2007

Blackbox description of proposed system

Input

- Multiple images
- Projective reconstruction
- Rough bounds for the intrinsics
 - Principal point
 - Focal length
 - Aspect ratio
 - Skew
- Output
 - Metric reconstruction
 - Intrinsic parameters, Rotations, and translations up to global scale

Outline of contributions

- New numerical method for solving auto-calibration equations
 - Buzz words:
 - Branch-and-bound deterministic global optimization
 - Convex/concave relaxations
 - "Semi-definite" cone programming
 - Assumes constant intrinsic parameters
- Guaranteed global minimum is reached
 - Algebraic cost with constraints on the solution
 - Classic methods are precarious

Bottom Line

Pros

- Applies more appropriate numerical methods
- Solves computational difficulties in the literature
- Potentially useful methods

Cons

- No experimental comparison with previous methods
- Not novel
 - Same strategy used for autocalibration in
 - Fusiello, Benedetti, Farenzena, Busti PAMI 2004 Kruppa Eqs
 - Similar CVPR'07 paper by same authors
 - Zero-skew, unit aspect ratio, principal point known. Direct method.
- No significant new insights
 - Authors were sensible in analyzing purely algebraic properties of the usual equations and exploiting this in providing a good algorithm
 - All equations, constraints, and major insights were already available, although with poor numerical methods
- Algebraic cost authors *still* recommend bundle adjustment in the end

Outline

- Projective reconstruction is given

 Computing epipolar geometry for all views
- Classic result: remaining DOF of cameras is a 3D projective transformation *H*

$$x_i = P_i X_i = (P_i H)(H^{-1} X_i)$$

 $P_i H^{-1}$ and P_i give the same epipolar geometry

- This ambiguity has 8DOF
 - 5 for calibration matrix K
 - Synonym: Image of the Absolute Conic (IAC)
 - 3 for non-linear distortion related DOF of rotation and translation of the system
 - Synonym: Plane at Infinity

Auto Calibration Equations in 1 Slide

- Basic idea
 - Assume fully calibrated system
 - All cameras must be consistent with first one
 - Based on epipolar geometry
 - No concrete geometric interpretation
 - This gives equations relating the intrinsic parameters

$$K^i K^{i\top} = (A^i - a^i p^\top) K^1 K^{1\top} (A^i - a^i p^\top)^\top$$

- A, a, and p involve the extrinsic parameters R,T
- For uncalibrated system:
 - A,a can be determined from Fund matrix (projective reconstr.)
 - The vector p and the intrinsic parameters K are given by solving the above equation

Outline

- Stratified auto calibration solves the 8 DOF in stages
 - Stage 1: solve for plane at infinity = ambiguity in R,T
 - Stage 2: solve for internal calibration matrix = IAC

Stage 1

solve for plane at infinity = ambiguity in R,T

- Modulus constraints:
 - Assume constant intrinsics in AC equations
 - Derive a necessary condition
 - Simultaneous quartic and cubic equations on 3 DOF of **p**
 - Local Minimization
- Problem solved in this paper:
 - Global Minimization of modulus constraints

Stage 2 solve for internal calibration matrix = IAC

• Solving the AC equations, given p

$$KK^{\top} = (A^i - a^i p^{\top})KK^{\top}(A^i - a^i p^{\top})^{\top}$$

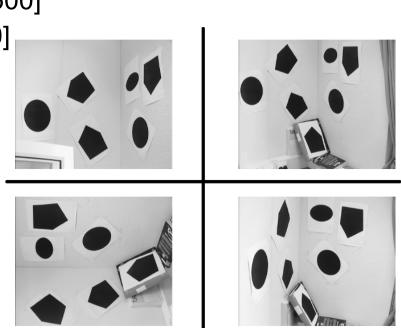
- Previous work: Linear methods
 - -Write the above equations as

$$A\mathbf{x} = 0$$

where x has the entries of KK^+

- Coerce the result x to be positive-definite, having form KK^+
- Sensitive to noise and to *p*.
- Problem solved in this paper:
 - Global minimization of $\|A\mathbf{x}\|$ subject to positive-definiteness

Experiments


- Synthetic data
 - 100 3D points within cube of side 20mm
 - Cameras ramdomly positioned at 40mm
 - Noise is added to coordinates
 - Randomly distort cameras within a synthetic ambiguity
 - Intrinsic calibration is identity

• Remaining 3DOF (plane at infinity) is random

				-		· ·		• /		
σ	m	Error				Iterations			Failure	
(%)		Δp	Δf	Δuv	Δs	$\pi_{\infty}(1)$	$\pi_{\infty}(2)$	ω^*	(%)	
	5	3.13e-3	6.70e-3	4.34e-3	2.35e-3	22.5 ± 14.7	3.7 ± 4.4	37.5 ± 14.4	0	
0.1	10	8.45e-4	8.07e-4	1.02e-3	3.85e-4	14.5 ± 4.6	2.4 ± 2.4	40.9 ± 13.1	0	
	20	8.39e-4	7.41e-4	3.90e-4	2.73e-4	14.4 ± 5.7	1.4 ± 1.2	31.8 ± 14.8	0	
	40	7.65e-4	4.24e-4	2.82e-4	2.01e-4	13.8 ± 4.4	1.5 ± 3.2	27.5 ± 16.9	0	
	5	6.64e-3	7.50e-3	4.97e-3	2.33e-3	24.7 ± 15.3	4.5 ± 5.8	41.0 ± 16.2	0	$\begin{bmatrix} 3 \\ 5 \end{bmatrix}$ $f_1 + f_2$
0.5	10	3.03e-3	2.51e-3	1.81e-3	1.20e-3	15.7 ± 5.6	3.0 ± 3.9	43.9 ± 15.9	0	$\Delta p = \sqrt{\sum_{i=1}^{3} (p_i/p_i^0 - 1)^2}, \Delta f = \left \frac{f_1 + f_2}{f_1^0 + f_2^0} - 1 \right $
	20	4.06e-3	2.13e-3	1.63e-3	1.10e-3	16.4 ± 10.5	4.1 ± 12.0	38.5 ± 11.6	0	$\Delta uv = \left (u + v) - (u^0 + v^0) \right / 2, \Delta s = s - s^0 $
	40	4.00e-3	1.69e-3	1.39e-3	7.09e-4	18.0 ± 9.0	9.3 ± 13.0	33.5 ± 11.7	0	$\Delta uv = \left[(u + v) - (u + v) \right] / 2, \Delta s = s - s $
	5	1.09e-2	1.60e-2	7.03e-3	4.96e-3	25.0 ± 20.3	5.1 ± 10.4	42.7 ± 17.4	2	
1.0	10	5.81e-3	4.05e-3	3.01e-3	2.03e-3	18.6 ± 8.5	5.7 ± 8.8	44.3 ± 12.0	1	
	20	8.16e-3	4.01e-3	2.44e-3	1.69e-3	21.5 ± 12.9	13.2 ± 17.2	43.6 ± 13.2	0	
	40	7.80e-3	3.23e-3	2.37e-3	1.41e-3	24.3 ± 9.7	20.5 ± 13.7	43.3 ± 13.9	0	

Experiments

- Time (matlab)
 - Typically 15s per iteration and 10 views, P4 1.5 GHz
- Real data
 - Bounds:
 - Focal length, aspect ratio [500,1500]
 - Principal point [185-250, 385-450]
 - Skew [-0.1 0.1]
 - Angles between walls
 - True: 88.1deg
 - Method: 89.8 deg

Extra Material

- Auto calibration equations
 - Cameras in projective reconstruction can be written as

$$\mathbf{P}_1 = [\mathbf{I}|\mathbf{0}] \quad \mathbf{P}_i = [\mathbf{A}_i|\mathbf{a}_i]$$

metric: $\mathbf{P}_i^M = \mathbf{K}[\mathbf{R}|\mathbf{t}] = \mathbf{P}_i\mathbf{H}$

- Ambiguity encoded in H as:

	Noise	m	Affine	Metric		Failure
$\begin{bmatrix} K & 0 \end{bmatrix}$	(%)		(Parallel)	(Parallel)	(Perpendicular)	(%)
$H = \begin{bmatrix} K & 0 \\ \top \mathbf{V} & 1 \end{bmatrix}$	0.1	5	0.49 ± 0.13	0.49 ± 0.12	0.45 ± 0.33	1
$H = \begin{vmatrix} -\mathbf{p}^{\top}K & 1 \end{vmatrix}$		10	0.31 ± 0.07	0.31 ± 0.07	0.24 ± 0.06	0
$\begin{bmatrix} -\mathbf{p} & \mathbf{n} & 1 \end{bmatrix}$		20	0.21 ± 0.04	0.21 ± 0.04	0.17 ± 0.03	0
		5	2.32 ± 0.50	2.33 ± 0.52	2.02 ± 0.87	3
	0.5	10	1.50 ± 0.30	1.50 ± 0.30	1.14 ± 0.25	0
		20	1.07 ± 0.17	1.07 ± 0.17	0.81 ± 0.15	0
		5	5.34 ± 1.57	5.36 ± 1.63	5.70 ± 4.00	10
	1.0	10	3.17 ± 0.63	3.18 ± 0.63	2.48 ± 0.66	0
		20	2.05 ± 0.39	2.05 ± 0.38	1.60 ± 0.38	0