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Chapter 1

Introduction

Given a sequence of 2D images, such as a video or a set of unorganized pictures, what can

be inferred about the 3D scene? Where was the camera at each picture? What were the

camera settings such as zoom level or focal length? These are fundamental problems in 3D

Computer Vision and Photogrammetry, and have found a wide range of applications such

as match-moving in cinematography (e.g., the effects in The Matrix), the organization of

a collection of photographs with respect to a scene (e.g., Phototourism [1] and the Look

Around feature in Google Panoramio), robotic manipulation, metrology from cameras in

the automobile industry, and 3D modeling from photographs for architecture, electronic

gaming, archaeology, and urban modeling (e.g., Google Streetview).

In this thesis, we develop the multiple view geometry of arbitrary, piecewise differentiable

curves, and the beginnings of the local theory on general surfaces. Curves occur everywhere

around us as outlines of objects, markings on surfaces, ridges and valleys, shadow bound-

aries, and thin objects such as branches and wires. Figure 1.1 shows different types of image

curves arising as contrast edges, which are primary types of curves we will be concerned

with. Other curves that benefit from the theory in this thesis are trajectories of moving

particles or markers observed by a system of cameras.

Curves are important on their own, as argued later in this chapter, but, most impor-

tantly, they are key as the initial part of a broader effort to reconstruct and parse general,

complex 3D scenes. We envision a large system where curves are used to bootstrap camera

pose for each image of a given sequence, and to generate an initial curve-based reconstruc-

tion of the scene which we call a 3D curve sketch. The reconstructed curves form the

foundations on top of which detailed 3D surfaces may be constructed for a general scene. In

this thesis we concentrate on curves, although we give preliminary results on local surfaces

1
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# Edge Type
1 Occluding edge arising

from a smooth surface

2 Occluding edge arising from a
surface normal discontinuity

3 Surface normal discontinuity
(sharp ridge)

4 Albedo/reflectance
discontinuity edge

5 Texture edge
6 Shadows
7 Shade curves
8 Highlights

Figure 1.1: Image curves arising from a range of physical sources.

and shading in multiple views.

In previous work, there has been very little treatment of general curves. The state of the

art in structure from motion, which solves for camera models in each view and generates

a preliminary 3D reconstruction, is based on sparse point features and, to a much lesser

extent, on straight lines and other algebraic curves such as conics. On the other extreme,

state-of-the-art multiview stereo methods, which reconstruct detailed 3D surfaces of simple

objects given precise camera models, operate on a pixel intensity level. These approaches

have been successful for select domains of application, resulting in autocalibration and

useful 3D reconstructions. However, as described later in this chapter, these methods and

their representations have drawbacks. General curves provide an intermediate, rich, and

meaningful representation being more succint and structured than pixels or voxels, while

more descriptive and representative of scene content than isolated feature points.

The study of general piecewise smooth curves and surfaces represents a branch of math-

ematics known as differential geometry. Our approach advocates the use of differential

geometry to model general curves and surfaces instead of plain projective geometry, which

is well-suited to model only points and globally algebraic curves such as lines and conics,

and algebraic surfaces such as planes and quadrics. In a sense, our approach proposes to
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augment multiple view geometry with differential methods in much the same way that ana-

lytical geometry is traditionally augmented with calculus in order to model general curved

phenomena through local analysis. Differential geometry allows to create local models for

integrating local information with information in a neighborhood, the basis of geometric

consistency. Our initial inspiration for this approach was partly drawn from the work of Li

and Zucker on curve-based binocular stereo [94].

We now analyze the drawbacks of state-of-the-art approaches, and the advantages of

curves.

1.1 Drawbacks of Isolated Point Features

The application of interest-point-based methods have been successful in scenes with

texture-rich images [1, 125]. Despite their success, these methods are not applicable in

general settings for reasons detailed below.

• They assume an abundance of interest points per independently moving object, pos-

sibly only with a fair degree of texture in projected images. Such a rich texture is

not always available in scenes with homogeneous regions, as in some man-made en-

vironments, as illustrated in Figures 1.2 and 1.3, or when objects project to a small

number of pixels, relative to the basis of computation of interest points. Even for

objects that are overall well-textured, having enough point features to recover low-

parametric motion parameters, there are often parts which lack texture and cannot be

reconstructed, as shown in Figure 1.4. In all these cases, there may be sufficient image

curve geometry, however, to reconstruct the scene and recover the cameras. Moreover,

when modeling non-rigid objects, point features are not dense enough, since there is

not enough of them per local patch.

• The stability of interest points is significantly reduced as the baseline exceeds 30◦ [113],

so these methods are fundamentally restricted to a limited range of baselines. Fig-

ure 1.5 illustrates this point. In contrast, certain curve features, such as sharp ridges

on a building, persist over a much greater range of views.

• Reconstruction using interest points results in an unorganized cloud of 3D points

where the geometric structure of the underlying curves and surfaces is not explicit,

as shown in Figure 1.6. This is not much of a problem if the focus is on calibrating

the viewpoints as in Phototourism [1]. However, when the 3D object geometry is
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Figure 1.2: A smooth scene for which the use of feature points breaks down. Row (a) shows
two views of a Mazda concept car. In (b), interest points (sift features) were detected on
each image, where the center of each circle denotes the position of the feature point. Notice
how many regions of the car lack feature points. In (c) barely any features were properly
matched, so that no camera estimation or reconstruction can be done. In contrast, the edge
curves shown in (d) are much more dense, structural and representative of the car.
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Figure 1.3: Another example of a smooth object for which the use of feature points breaks
down. Column (a) shows a sculptural object in different views. Column (b) shows the
detected feature points (sift). Notice how there are very few features detected in this
object. In contrast, column (c) shows curves obtained from an edge detector and linker,
which are capable of better representing the object.

Figure 1.4: Feature points are sparse: even for a textured object such as the picture on
the left, there are regions with low texture which will not appear in the reconstruction.
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Figure 1.5: The matching of point features such as sift breaks down with wide baseline.
(a) shows the feature correspondence for small baseline. Notice how a considerable number
of correct matches were found. However, when we increase the separation between the views
(b), the matching breaks down. Other examples of failure are given in (c–d).

Figure 1.6: State-of-the-art methods based on interest points have been useful to deter-
mine camera models for each view, but result in a sparse and unorganized point cloud
reconstruction (right). These results are from [1].
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required, such as in registration of new views, modeling for architecture, archaeology,

entertainement, object recognition, and robotic manipulation, it would be useful to

augment the output with an explicit geometric structure of curves. It is worth not-

ing that it is common to mesh a 3D point cloud, particularly using Poisson surface

reconstruction [87] when normals are computed at each 3D point using patch-based

multiview stereo techniques [58]. This approach suffers from oversmoothing artifacts,

specially in regions where the 3D points are sparse.

• Matching of interest points breaks down at regions with considerable surface curvature

and foreshortening, such as parts of surfaces curving away from the viewer. This is

due to the fact that the change from one view to the other can no longer be modeled

by a simple transformation as assumed by point features (in the case of sift, this is a

rotation and scaling), but the transformation needs to account for surface curvature.

Therefore, these regions cannot be reconstructed, as shown in Figure 1.7.

1.2 Drawbacks of Intensity-Based Multiview Stereo

Another category of 3D reconstruction techniques, multi-view stereo methods, produce

detailed 3D reconstructions of objects imaged under controlled conditions by a large number

of precisely calibrated cameras [56,61,64,74] (see [134] for a review). However, they cannot

handle general scenes, since most approaches are restricted to a single object or to a specific

type of object, such as buildings. In addition, they often require accurate camera calibration,

operate under controlled acquisition, and are often initialized by the visual hull of the object

or a bounded 3D voxel volume. Figure 1.8 shows an example.

A large body of literature in two-view short-baseline stereo are based on correlat-

ing unorganized and sparse feature points by matching some aspects of the local region

surrounding the feature to disambiguate correspondences, and other methods find a dense

depth map by correlating a local neighborhood of each pixel. A number of criteria such as

smoothness, uniqueness, ordering, limited disparity, and limited orientation disparity, have

been used to deal with the inherent ambiguity. However, these can break down, especially

with wide baseline, with multiple nearby structures, or when discontinuities and branching

structures exist [94]. Moreover, most dense binocular stereo approaches assume the surfaces

are locally fronto-parallel, which can generate spurious reconstructions for curved surfaces.

This was remedied by Li and Zucker [96] through the use of surface differential geometry,

as advocated in this thesis in a more general setting.
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Figure 1.7: Example of the failure of interest point matching near high surface curvature
with foreshortening. The top row shows two views of an indigenous bird sculpture, which
is highly textured and curved. The bottom row shows feature points detected in each view,
and the feature points that were properly matched between the two views are shown in
green. Matching did not occur near regions curving away from the viewer.
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Figure 1.8: From [74]: the typical output of multiview stereo methods give detailed tex-
tured 3D reconstruction of objects (right), but operate under controlled conditions (e.g.,
homogeneous background), and are often initialized by the visual hull of the object (left),
which requires well-segmentable silhouettes in each view and presumes a well-defined work-
ing volume.

1.3 Advantages of Curves

“By reporting only the lines of contrast, the retina avoids having to prepare endless, uninteresting

and massively redundant reports about plain surfaces”– Simon Ings in A Natural History of Seeing

The goal of this thesis is to augment current multiview reconstruction and camera calibration

technology by developing a generally applicable approach based on curves, which is attractive be-

cause:

• Curves arising from edge discontinuities are denser and more structured than interest points,

while efficiently representing the image or 3D scene. They provide a useful middle ground

between a costly and redundant pixel/voxel array representation and a very sparse, unstruc-

tured point cloud representation. This allows the fast production of reconstructions that,

although not meshed, are still recognizable, structured and cheap to manipulate and store.

For instance, it is impossible to register new cameras given just a 3D point cloud, but given

a 3D curve representation of the scene this task becomes possible due to the added structure.

It is well-known that edge-based representations can efficiently represent most of the image

content [39], and this motivates an efficient 3D curve-based reconstruction.

• Curves have greater invariance than interest points to changes in illumination.

• Curves are stable over a greater range of baselines as compared to interest points.

• Curves have good localization in the orthogonal direction at each point, and their long extent

allows for more accurate detection and localization under a wider variety of viewpoint changes

than point features.
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• Edge curve structure is correlated with surface properties. The reflectance or ridge curves

provide boundary condition for surface reconstruction, while occluding contour variations

across views indicate surface properties [27].

• Long and complex enough curves are less ambiguous to match and track since they are richer

and more structured primitives than points and lines.

1.3.1 Perceptual Motivation

The notion that image curves contain much of the image information can be supported by a recent

study [29] which found that generally subjects are able to judge 3D surface normals of an object

depicted by a line-drawing almost as accurately as for objects depicted by a shaded image, Figure 1.9.

Furthermore, some indication of the importance of curves in human stereo vision comes from the

Figure 1.9: From [29]: subjects are able to judge 3D surface normals of an object depicted
by a line-drawing almost as accurately as for objects depicted by a shaded image, indicating
that image curves depict much of the image information.

line drawing stereograms of Wheatstone and his successors [156], where it seems that the shapes of

the curves are crucial in determining the stereo correspondences, Figure 1.10.

1.4 Main Contributions

The contributions of this thesis are as follows.

On the theoretical side (Chapters 3 and 4), our main contribution is the development of a

complete study of the local geometry of curves in multiple views, as well as the beginnings of a

similar study for surfaces. We provided a unified framework for modeling curvilinear structure in

multiple views, covering fixed, occluding, and nonrigid curves, for the cases of a discrete set of views

and differentiable camera motion. This framework unifies and corrects previously scattered results

in the literature, and also provides new results. We also developed a preliminary study on the case
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Figure 1.10: From [17]: Wheatstone-influenced curved line drawing stereogram.

of curved surfaces, their local shading and the local behavior of surface markings. The theory is of

fundamental importance to any application requiring relationships between images and 3D structure

of curves, such as stereo matching, curve tracking, and camera estimation.

We devised formulas for obtaining the differential-geometric quantities of tangent, curvature,

and curvature derivative of an image curve in terms of the tangent, curvature, curvature derivative,

and torsion of the underlying space curve (Chapter 3). We also showed how tangent, curvature,

curvature derivative, and torsion of a fixed space curve can be reconstructed from two views. Torsion

is essential in the modeling of non-planar curves, and to the best of our knowledge, this is the first

time torsion reconstruction from multiple views appears in the literature. Moreover, we showed how

to relate the parametrization of a projected curve to the parametrization of the space curve, and the

parametrizations of two perspective projections of the same space cuve. Our approach provides new

derivations for previous lower-order results [50,94] using a simpler method that easily generalizes to

the higher order results involving curvature derivative and torsion.

Another contribution concerns the unified study of how contour image velocities and their spatio-

temporal derivatives behave in terms of differentiable camera motion parameters and 3D motion

parameters, for the cases of rigid/stationary curves, occluding contours, and general non-rigid curves

(Chapter 3). Among the most important results, we provide an extension and correction of a result

from [120, 122] regarding a polynomial equation that relates observed normal contour velocities

to differentiable camera motion. The original equation was corrected for a missing term, and we

extended it to handle occluding contours.

We also devised a method for extrinsic camera calibration (also known as camera pose esti-

mation or camera resectioning) from edgel correspondences. In other words, given enough 3D-2D

correspondences between points having attributed tangents, the method solves for the camera pose.

This is an important step toward camera calibration from the local geometry of curves, and the

method is intended for use as a minimal engine within a ransac framework.

On the practical side (Chapter 5), we developed an approach, called the 3D curve sketch, to

match and reconstruct curves from multiple views of general scenes. The method is able to efficiently

integrate information across a very large number of views. It requires initial camera models which

are usually imprecise, and refines the cameras using curve fragments and edge information. The
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approach augments existing interest point based and stereo approaches in providing explicit curve

geometry as well as in extending applications where the assumption of these methods fail but image

curve content is significant. The work is expected to form the initial building block in a broader

effort to use image evidence of the explicit geometry of curves and surfaces and reconstruct these by

integrating information across many views in a flexible way. The 3D curve sketch will be the initial

structure on which surfaces may be hypothesized and constructed.

1.5 Organization of the Thesis

In Chapter 3.2 we lay down the basic notation and definitions regarding the classic differential

geometry of curves, how we model perspective projection, and how we model the cases of a discrete

set of views observing a scene and the kinematics of continuous camera motion (as in video). In

Chapter 2 we review the literature on the use of curves in multiple view geometry, rewriting some

important results using our notation.

Chapter 3 covers the main results of this thesis, namely the study of projection and reconstruc-

tion of curve differential geometry. In Section 3.3 we study how differential geometry of a space curve

relates to the differential geometry of its perspective projection. The way these differential-geometric

quantities are affected by the intrinsic parameter transformation is studied in Section 3.3.1. In Sec-

tion 3.4 we show how the differential-geometric quantities of tangent, curvature, curvature derivative,

and torsion of a fixed space curve can be reconstructed from two views. We also show how to relate

the parametrization of projected curves in two views to each other.

Chapter 3 also studies the differential geometry of curves under differentiable motion. It covers

how the image velocities and their spatio-temporal derivatives behave in terms of camera motion

parameters and 3D motion parameters, for the cases of rigid/stationary curves, occluding contours,

and general non-rigid curves. Appendix B covers preliminary material on differential-geometric

relationships for surfaces, features lying on surfaces, and shading. The purpose of this appendix is

mainly for future work. In Chapter 4 we give the theory for extrinsic camera calibration (camera

resectioning) given 3D-2D correspondences between points with attributed tangents. In Chapter 5

we describe a practical method for curve-based reconstruction and camera calibration, called the 3D

curve sketch.



Chapter 2

Previous Work

This chapter reviews previous work on the use of curves in multiple view geometry. The literature

can be divided into curve-based camera calibration and curve-based stereo reconstruction. The

calibration category can subdivided into methods that make use of epipolar tangencies, and methods

that calibrate from tracked curves in video. The stereo category can be subdivided into multiview

stereo (which uses many views), binocular and trinocular stereo, and occluding contours for surface

reconstruction in video. Papers that don’t fit neatly into the above categorization (e.g., papers

that cover many aspects of them) are put in an ‘other works using curves’ category. We now delve

into each of these in detail. For each sub-category of approaches, we provide an overview of the

literature and the underlying concepts, summarize key selected papers in further detail, and list the

main drawbacks. For details on the notation used in this chapter, see Chapter 3.

2.1 Curves for Calibration

2.1.1 Epipolar Tangencies

The problem attacked by these papers is: given corresponding image curves across two or more views,

but not their alignment (i.e., point-wise correspondence), obtain the multiview epipolar geometry

(or camera pose if the intrinsic parameters are known).

Very little work has been done to tackle this problem, which boils down to finding the epipolar

geometry consistent with the given curve correspondences. All previous work in this category are

restricted to closed curves, which can be either images of fixed curves or of occluding contours. It

can be shown that in this case the constraints on calibration occur at so-called epipolar tangencies:

if an epipolar line is tangent to a curve in one image, its corresponding epipolar line must also be

tangent to the same curve in the other image, Figure 2.1.

Porrill and Pollard [126] started the concepts of how epipolar tangencies constrain epipolar geom-

etry, and devised an iterative method to refine the epipolar geometry once the solution is sufficiently

13
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Figure 2.1: Correspondence of epipolar tangencies used in curve-based camera calibration.
An epipolar line on the left, whose tangency at a curve is marked in a certain color, must
correspond to the epipolar line on the right having tangency on the corresponding curve,
marked with the same color. This concept works for both static curves and occluding
contours.

close to the true one. They make use of curvature in order to obtain a local osculating circle ap-

proximation to the curve at epipolar tangencies in order to efficiently update the tangency position

after each iteration. This method is described in more detail in Section 2.1.1. Kahl and Heyden [85]

attempted to find a closed-form solution to epipolar geometry given curve correspondences, and they

succeded for the case where the curves are conics. Kaminski and Shashua [86] provided closed-form

solutions to the case of general algebraic curves. Berthilsson et. al. [13] provided an iterative method

and a non-optimal way of finding an initial solution, but no closed form is given.

The same ideas are also valid in the case of occluding contours such as object silhouettes [5,

6, 26, 59, 73, 109, 130, 140, 157, 158]. In this context, epipolar tangencies are also known as frontier

points. Silhouettes are attractive in contolled conditions with a large number of cameras observing

an object (e.g., a human figure) where the background can be suitably chosen to make silhouette

extraction easy. In these situations the silhouettes are visible from any direction and their epipolar

tangencies are useful for calibrating the views.

The main drawbacks of previous work on curve-based camera calibration using epipolar tangen-

cies are:

• All methods assume closed curves

• Global algebraic curve models are unrealistic for general scenes

• Iterative methods require initialization

• Silhouette methods require controlled aquisition.

We now review selected papers in further detail.
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Figure 2.2: Illustrating the differential update of epipolar tangencies through the use of
the osculating circle or curvature information.

Summary of Porill and Pollard IVC 1991

This section summarizes [126]. They start with edge detection and linking in two views. An initial

epipolar geometry is given, but is imprecise. The goal is to optimize the epipolar geometry, which

is a representation of the two-view calibration (relative pose).

The epipolar geometry is represented by the essential matrix E. First, detect edges tangent to

the epipolar line (points with epipolar tangency) using the initial E. Edges with epipolar tangency

are sparse since they are localized along epipolar line. The orientation of the edges is used to obtain

a sparse feature set and thus reduce the correspondence ambiguity. The epipolar tangent edges are

then matched in pairs, which is done by hand in this paper. The same is done for intersections of

corners with epipolar lines.

If the epipolar geometry is not known, the authors provide an idea to test all possible epipolar

line correspondences and positions for the epipoles to show that curve tangencies can never cor-

respond under any epipolar geometry. In order to perform such tests efficiently, the images can

be divided, using the aspect graph concept, into regions of epipole positions for which curves have

stable descriptions (in this case, stable number and type of corresponding epipolar tangencies). This

concept of aspect graphs for configurations of epipolar geometry with respect to curves helps justify

that the iterative optimization method works if the epipoles are initialized in a correct stable region.

As described below, the optimization clearly requires the initial solution to be already inside the

correct stable region. In Appendix D, we explore a similar aspect graph approach to delineate valid

epipolar regions. Note however, that although the aspect graph idea for this problem was proposed

in this paper, it was not used in practice by the authors.

If we represent the epipolar geometry by an epipole, the distance along the curve between the

new (i.e., after one iteration of the optimization) and old epipolar tangent edges can be computed

to the first order from the curvature of the curve, as illustrated in Figure 2.2.

The goal is to refine the calibration and the matching point coordinates so as to improve their

quality as reflected in the essential constraint residual ‖xEy‖. The free variables are the six param-

eters in E and the two arclength changes, one for each matching edge. An overview of the algorithm
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is as follows.

• Start with a sparse correspondence of edges at epipolar tangencies (or corners) and coarse

epipolar geometry

• Fix the arclengths and change E using closed form solutions for both the increments and the

differential of ‖xEy‖ with respect to E

• Fix E and change the arclengths using closed form solutions for the increments based on

curvature of the curves

• Iterate on the above two steps.

At least 8 corresponding epipolar tangency points in total between two views are first computed

using the coarse epipolar geometry. This number of points is necessary for using Longuett-Higgins’

simple 8-point algorithm for computing the essential matrix, although 5 points would be sufficient

for this task. The method refines the epipolar geometry and the initial corresponding feature points

by optimizing the epipolar constraint equation γ2>
i Eγ1

i = 0 for all corresponding points:

min
E,γ1

i ,γ2
i

∑

i

‖γ2>
i Eγ1

i ‖2. (2.1.1)

The minimization is performed by an iterative scheme, alternating updates of E keeping the points

fixed, and updating the points given the new essential matrix.

Given a current solution of E, the authors derived a pair of linear equations for the changes

in position of the matching feature points along their respective curves. In order to obtain those

equations, we first note that when two curves have corresponding epipolar tangencies at γ1
i and γ2

i ,

the tangent vectors at the tangencies t1i and t2i must lie along the epipolar lines. At tangencies we

thus have two extra linear conditions on E:

t2>i Eγ1
i = γ2>

i Et1i = 0, (2.1.2)

which we call the epipolar tangency constraints. In order to derive them, recall (see Appendix D)

that Eγ1
i represents the three coefficients of the equation of the epipolar line of γ1

i in the second

image. The first two coefficients on the equation of a line ax+by+c = 0 represent a vector along the

normal to the line. The third coefficient is irrelevant for the above equations, since the tangent t was

obtained by differentiating γ = (ξ, η, 1)> and has third coordinate equal to zero. Hence, the above

equations are saying that, at an epipolar tangency, the tangent to the curve has to be perpendicular

to the normal of the epipolar line.

At each iteration, let E0, γk
i0 represent the initial values of the essential matrix and corresponding

points. Given the updated essential matrix E, we want updated points γk
i satisfying the essential

constraint and the epipolar tangency constraints. The updated points can be written with respect

to the initial ones by a first-order Taylor approximation of the underlying curves:

γk
i = γk

i0 + dγk
i , k = 1, 2, (2.1.3)
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ignoring second and higher-order terms. Plugging this into the essential constraint, we have:

(γ2
i + dγ2

i )
>E(γ1

i + dγ1
i ) = 0, (2.1.4)

to first-order. From now on, we will drop the point subscript i wherever it is clearly understood that

the equations are valid for all i. Using dγk = dsktk, with s being the arclength, we have:

(γ2 + ds2t2)>E(γ1 + ds1t1) = 0, (2.1.5)

that is, the increments dsk are found by looking at what happens when we treat the curves as

straight lines, locally. However, since epipolar tangencies do not change along a straight line, this

equation does not constrain the increments. To see this, let us multiply-out the terms in the above

equation, ignoring second-order terms:

γ2>Eγ1 + ds2t2>Eγ1 + γ2>Eds1t1 = 0. (2.1.6)

The last two terms are zero, by the epipolar tangency equations. Therefore, we end up with no

constraint at all on the point increments (at least to first-order). What we really need is to go one

order higher, that is, use the epipolar tangency equations in order to constrain these increments.

In effect, we will be differentiating the epipolar tangency equations (keeping the essential matrix

constant). To first-order, we can write the second epipolar tangency equation as:

γ2>Et1 = (γ2
0 + dγ2)>E(t10 + dt1) = 0. (2.1.7)

Using dγk = dsktk and dt1 = dsκ1
0n

1
0,

(γ2
0 + ds2t2)>E(t10 + dsκ1

0n
1
0) = 0. (2.1.8)

Distributing the terms and ignoring high-order quantities we have

γ2>
0 Et10 + ds2γ2>

0 Eκ1
0n

1
0 + ds1t1Et10 = 0, (2.1.9)

where we dropped the point sub-indices for simplicity. This is an equation constraining the in-

crements ds1 and ds2. There is another such equation derived from the other epipolar tangency

condition t2>Eγ1 = 0. Hence, we have a pair of linear equations for the changes in position along

the curve, to be solved after every update of the essential matrix.

Summary of Kahl and Heyden ICCV 1998

The paper [85] proposes an analogous of the fundamental matrix to conics, in a purely algebraic

approach. Given a set of conics in two views known to be in correspondence, but unknown alignment

(i.e., pointwise correspondence), the goal is to compute the epipolar geometry consistent with them.

The basic geometric intuition is that epipolar tangencies have to correspond, thus each conic corre-

spondence gives 2 independent constraints (2 tangencies per conic). A basic challenge is due to an
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apparent chicken-and-egg problem: we need the epipolar geometry to obtain the epipolar tangencies;

but the epipolar geometry must be computed from the epipolar tangencies. However, note that the

paper is fully algebraic and never mentions epipolar tangencies, perhaps due to this chicken-and-egg

ambiguity in defining them.

The corresponding conics can be either images of planar conics or silhouettes of quadrics. Four

conics are needed to estimate the fundamental matrix, since each pair of conics gives 2 constraints,

and 4 conics give 8 constraints, enough to constrain the 7 dof in F . The problem of estimating the

fundamental matrix from 5 point correspondences and 1 conic in general has 10 different solutions,

obtained as the roots of a tenth degree polynomial. This is a result analogous to the 7 point

correspondence case, which yields 3 different solutions in general. The link with the absolute conic

is a motivator, and is integrated into the approach. If the cameras are (intrinsically) calibrated, then

absolute conic is known, which gives 2 constraints on epipolar geometry just like any other conic.

Thus, in the (intrinsically) calibrated situation the essential matrix can be recovered from 3 conic

correspondences.

A new fundamental equation for conics is presented, in which 6 matrices appear, called the

conic fundamental matrices. We now transcribe the basic equations. The book [69] reviews basic

material on conics. If l is a dual representation of a 2D image conic, and L is a dual representation

of a 3D space quadric that projects into l, we can write

λl = PLP>, λ 6= 0, (2.1.10)

where λ is a scale factor. We can also express the symmetric matrix l as a 6-vector l̃, and L as a

10-vector L̃, and write

λl̃ = P̃ L̃, (2.1.11)

where P̃ is a 6× 10 matrix, whose entries are quadratic expressions in the entries of P .

Let l̃1 and l̃2 denote corresponding conics. Then the constraints imposed by the correspondence

can be written

l̃>1 Fi l̃2 = 0, i = 1, . . . , 6, (2.1.12)

where the matrices Fi are called fundamental matrices for conics, and all have rank ≤ 2. There

are three shuch linearly independent matrices (in the entries of Fi), something that could probably

be expressed in tensor notation. However, there are only two algebraic independent constraints, in

the sense that the algebraic variety defined by the 6 equations above has dimesion 4. The proof of

this involves using techniques for analyzing polynomial equations and Maple [31].

The numeric experiments in the paper are all synthetic, and use Equation 2.1.12 only as a

residual within an iterative optimization framework. The optimization was initialized randomly,

and the percentage of runs that converged was measured, for varying numbers of conics. The

experiments showed this method to be extremely sensitive to the initialization, even when a large

number of conics (50) is used.
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Summary of Kaminski and Shashua IJCV 2004

The paper [86] extends multiple view geometry techniques to work with algebraic curves. From

corresponding algebraic curves in multiple uncalibrated views, the purpose is to recover the epipolar

geometry, the camera poses, and the 3D reconstruction. The problem of how to obtain the curve

correspondences is not dealt with in this paper – this is done by hand in some experiments.

The main results of the paper are as follows:

• Provides the minimum number of corresponding algebraic curves required to solve for the

epipolar geometry. This Extends Kruppa’s equations to describe the epipolar constraint of

two projections of a general algebraic curve, beyond just conics.

• Studies the recovery of the homography induced by a planar space curve, given corresponding

projections of this curve. This homography gives point-to-point correspondence information

between views, thus being more constraining than the epipolar geometry.

• Addresses the problem of reconstructing an algebraic space curve, given corresponding pro-

jected curves. The epipolar geometry between the views is assumed known, but no alignment

is given between the projected curves. If the degree of the curve is greater than 2, the recon-

struction is unambiguous – just intersect the reprojection cones in 3D. If the degree is less

than or equal to 2, more than two views are necessary for an unambiguous reconstruction.

• Other forms of reconstruction are shown. The dual space representation (tangent lines), and

the Grassmanian-based representation. The latter requires no fitting in the image domain

(although many images are required), and allows the 3D polynomial to be found from the

image-based point representation of 2D curves.

Many of the proposed problems are reduced to solving systems of polynomial equations. Recent

computational algebraic geometry algorithms apply [31].

Summary of Sinha et. al. CVPR 2004

In [140], multiple video cameras are looking at the same object. The cameras are static, and the

background is controlled, so that the object silhouettes are easily segmentable. At a snapshot at

t = t0, we have two outer epipolar tangents at a silhouette for a given hypothesized epipole. We can

use a snapshot at t = t1 to get two other outer epipolar tangents for the same epipoles, therefore

constraining the geometry, since three corresponding epipolar lines suffice for determining all others

(see Appendix D). Figure 2.3 illustrates the idea.

However, the epipoles are unknown. Therefore, a ransac-like search in this 4D space is per-

formed. The epipoles can be found by intersecting two epipolar tangency lines. Therefore, hypothe-

sizing an epipole is the same as hypothesizing two epipolar tangency lines. The authors implement

this search by first computing the convex hull of the 2D object, then computing its dual – for each

point in the boundary of the convex hull, there will be a tangent line. Random sampling is done

by picking two tangent lines at random, intersecting them to find a hypothetical epipole, then using
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Figure 2.3: From [140]: given hypothesized epipoles, three corresponding epipolar lines are
needed to solve for the complete epipolar geometry. The authors easily obtain two such
correspondences at an instant t = t0 (silhouette in gray) though the outermost epipolar
tangencies, and a third correspondence is obtained by keeping the camera fixed but taking
a snapshot at t = t1 and using an outer epipolar tangency (at the white silhouette).

another video frame to get a third epipolar tangency. Now all other tangencies are predetermined

(since three corresponding epipolar lines determine all others), and consensus is measured by how

many frames have epipolar tangencies predicted by the hypothetical epipolar geometry. Repeat

picking two tangents until maximum consensus is met, or until the probability of picking the right

tangents is higher than a tolerance.

The calibration is extended for more than two views by doing every view to a central view,

then finalizing with a bundle adjustment. The original paper actually does all this without know-

ing intrinsic parameters, obtaining a projective reconstruction, then it performs projective bundle

adjustment, and it finally goes on to an auto-calibration procedure, and finally a metric bundle

adjustment.

2.1.2 Infinitesimal Motion

If we measure image velocity in n pixels, γt(1), . . . ,γt(n), can we recover a first order differential

motion model for the camera motion? Maybank was the first to show that the number of solutions, in

this case, is at most 10, similar to the essential matrix situation for discrete motion [106]. In the case

of curves, however, one cannot measure the image velocities at each point of the curve, since there

is no epipolar geometry and the curve is localized in only one dimension. We can, however, measure

the velocity at each point by tracking along the normal direction at each point of the curve. So the

question arises: can a camera motion model be recovered from these measured normal velocities?

The answer is, in theory, yes [48, 120], by means of a polynomial equation relating these velocities

to the differential camera motion model. This is reviewed in more detail in the next section. Note,

however, that this polynomial equation is corrected in the present thesis in Chapter 3, as well as

extended to the case of occluding contours.

The main drawbacks of previous work on curve-based camera calibration from tracked curves in
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differentiable motion are:

• Impractical implementations

• Erroneous formulas

• Occluding contours are not treated

We now review the paper [48] and related publications in further detail.

Summary of Faugeras and Papadopoulo IJCV 1993

The paper [48] is the main reference for the study of infinitesimal structure and motion recovery for

curves (except occluding contours). Experience with implementing the theory in [48] appeared as a

technical report [121], where one can find stability experiments on real data, and also in [122]. The

latter paper also proposes and explores visibility constraints for curves. There is a version of [48]

that appeared in Mundy’s geometric invariance book [114, ch.16]. The definitive reference, however,

is Papadopoulos’ PhD thesis [120], which contains the most up to date formulas and the explicit

polynomial equations not shown in the original papers.

Faugeras and Papadopoulo showed that for non-rigid 3D curves seen from an uncalibrated

monocular video, reconstruction is dependent on tangential velocity, which is not observable from

the geometry. Multiple views are needed in this case, as explored in more recent work [22, 37].

For rigid 3D curves, the reconstruction is in principle possible: the normal velocity at each curve

point allows for the recovery of a 2nd order motion model of the curve (or, alternatively, the camera

motion model assuming camera is moving and the curve is fixed), as well as the curve shape. Specif-

ically, each point’s second order spatio-temporal derivative gives a polynomial equation, referred

to as the L1 equation, in the motion model parameters (rotation velocity, translation velocity, and

their derivatives). Although the original paper [48] claims there are two polynomial equations per

point, in [121], they realize that the two polynomial equations are redundant – one of them can be

expressed as a linear combination of the other and its first time derivative. The final polynomial

equation can be found in [120], but we found out it also has an error due to a missing term which

we provide in Chapter 3 of this thesis.

Even though most of the paper considers a monocular sequence of views of a moving curve,

there is a section towards the end regarding a binocular stereo rig observing a rigidly moving curve

(or, similarly, a moving stereo rig observing a fixed curve). The case of a stereo rig assumes both

cameras fully calibrated both intrinsically and extrinsically relative to each other, and the goal is

to disambiguate matches along epipolar lines. Let there be a curve in the left image for which we

wish to find a matching curve among many candidates in the right image. The proposed contraint

is basically that the wrong correspondences cannot be modeled by a 3D curve moving rigidly.

The authors derive motion constraints from curve tangents. At each time instant, a 3D tangent

can be hypothesized/reconstructed from two putatively corresponding image tangents by a formula

we review in Chapter 3. Across different time instants, for each view there is another formula to
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hypothesize/reconstruct a 3D tangent given tracked tangent in at least two frames. We review this

formula in the end of Chapter 3. Combining the equations for the 3D tangent, they obtain two

equations describing the projection of the angular velocity in the plane the plane normal to the 3D

tangent (equation 70 of the paper). The authors give an idea on how to use these constraints in

practice, although no experiments are performed in the paper.

The main contributions of the paper are: (i) the relation between 3D motion and curve geometry

to spatio-temporal measurable geometry of the image curves; (ii) the recovery of 3D motion and

depth from observed image curve geometry; and (iii) the use of a rigidity constraint to disambiguate

stereo correspondence when the scene is moving.

The main drawback of the paper, according to other authors, is that the high-order derivatives

are difficult to compute.

2.2 Curves in Stereo

2.2.1 Multiview Stereo Using Curves

These papers are concerned with the following problem: given a system of cameras that are well-

calibrated both intrinsically and extrinsically relative to each other, reconstruct the scene. The most

common class of methods in this category are those making use of silhouette curves [14, 74, 91, 92].

Typically there is only a single object per scene, and the acquisition is controlled so that the outer

silhouette curves can be easily extracted. Once the silhouettes are extracted in each view, they

are backprojected in space forming a 3D visual hull. This reconstruction provides a rough surface

model for the object. The visual hull is then used as a starting point for a surface-based evolution

that optimizes photometric constraints while keeping the surface constrained to have the observed

silhouettes. Figure 1.8 illustrates this process. Although these methods make good use of curves in

specific domains, their main drawbacks are:

• Controlled acquisition: require well-segmentable silhouettes, and usually require precisely

calibrated cameras.

• Can’t handle multiple objects, limiting their applicability to general scenes.

Another type of work was developed by Wu and Yu [159], where a multiview reconstruction

using curves is performed manually in a cad fashion. We review this paper next, as it forms a main

previous work for our own reconstruction system described in Chapter 5.

Summary of Wu and Yu VC 2005

The paper [159] describes an interactive system for multiview 3D reconstruction using curves. For

each view, the user marks vertices, curves connecting vertices, and surface patches bound by a chain

of curves, as well as their correspondences across the views. The intrinsic parameters for each view
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are known. The output of the system is a 3D texturized surface model with important curves and

the camera poses for each view.

From the point correspondences that the user provides, the cameras are found by stitching

together views and solving for the essential matrix, followed by bundle adjustment of the 3D points

and cameras. Once the system is fully calibrated, the curves are reconstructed using dynamic

programming followed by a bundle adjustment. This generates a 3D curved wireframe model. The

surface patches bounded by chains of curves are then reconstructed by two possible methods: (i)

dense stereo in case there is enough texture in the region, or (ii) thin-plate spline interpolation of the

wireframe and point reconstruction, in case there is little texture in the region. For display purposes,

a triangular mesh is generated from the continuous model, and image-based texture-mapping is

performed.

The reasons for using curves are that: (i) Man-made scenes do not have much texture, but have

many curves (e.g., a car, a printer, or a sofa). For these types of scenes, the curves can describe the

object fairly well; and (ii) curves can be easily specified by the user.

No smooth occluding contours are supported. All occluding contours are approximated by a

hard dihedral edge. Curves are mainly used within the reconstruction problem: given corresponding

curves with known corresponding endpoints and no linking problems, find the alignment between

them (i.e., the pointwise correspondence) and the 3D reconstruction. The input curves are repre-

sented by linearly interpolated pixel samples connecting the endpoints.

Because of the epipolar constraint, solving the point mapping function between two image curves

seems trivial at first. For every point on the first curve, the intersection between its epipolar line

and the second curve is the corresponding point in the second curve. However, this is true only when

there is exactly one such intersection – no more, no less. In reality, there might be zero or multiple

such intersections, due to the shape of the curves and uncertainty in the camera poses. In the worst

case, the image curve is almost straight but parallel to the epipolar line to cause huge amount of

uncertainty in the location of the intersection.

The multiple view curve reconstruction is formulated as follows. Let an image curve γ(s) be

parametrized by s ∈ [a, b]. When there are m corresponding image curves, one for each view, we have

γi(si), i = 0, . . . ,m − 1, each of which with a distinct parameter si ∈ [ai, bi]. The correspondence

between the endpoints of these m curves are known. Pick γ0 as the base curve and assume that

the endpoint γ0(a0) corresponds to γi(ai), i = 1, . . . ,m− 1. Thus, obtaining point correspondences

among these m curves is equivalent to solving m−1 mappings σi(s0), i = 1, . . . ,m−1, each of which

is a continuous and monotonically increasing function that maps [a0, b0] to [ai, bi]. For closed curves,

as long as there are at least two point features on each of them corresponding to one another, each

closed curve can be broken into two or more open curves.

The relative rotations and translations between the ith and the jth camera frames are respec-

tively denoted by Rij , Tij , i, j = 0, . . . ,m−1. The epipolar constraint between corresponding points

on the ith and jth curves requires that

γj(σj(s0))>[Tij ]×Rijγi(σi(s0)) = 0, s0 ∈ [a0, b0]. (2.2.1)
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Thus, the desired mappings should minimize some kind of geometric distance between correspond-

ing epipolar lines. Furthermore, to guarantee that σ(s) is a monotonically increasing one-to-one

mapping, σ(s) ≤ σ(s′) must be held for arbitrary s ∈ [a, b] and s′ ∈ [a, b] such that s < s′. To

incorporate these considerations, the minimization problem should be formulated as

min
σi, 1≤i≤m−1

∑

ij, i<j

∫ b0

a0

{
dist2[γj(σj(s)), elij(γi(σi(s)))] + dist2[γi(σi(s)), elji(γj(σj(s)))]

}
ds

+ λ
∑

i

∫ b0

a0

∫ b0

s

max{σi(s)− σi(s′), 0}2 ds′ds,

(2.2.2)

where elij(p) denotes the epipolar line on view j of point p on view i. The first term enforces the

epipolar constraint, and the second term enforces that σi(s) is a 1–1 mapping. The parameter λ

indicates the relative importance of the two terms, and is set to a large value such as 103.

In practice, the implementation considers curves with subpixel accuracy defined as the piecewise

linear interpolation of a discrete set of pixels. The longest image curve serves as the 2D parametriza-

tion of the 3D curve, and is denoted as γ0(s0).

Both the quasi-Newton and conjugate gradient descent methods can effectively minimize the

discretized cost function. However, a reasonable initialization is required before the nonlinear op-

timization. The proposed method initializes the mappings using dynamic programming, which is

suitable for order-preserving one-dimensional mappings. Each σi(s) is initialized independently us-

ing only two curves (γ0 and γi) and adopt the discrete version of the first term in (2.2.2) as the cost

function for dynamic programming. The one-to-one mapping is enforced as a hard constraint, since

only order-preserving mappings are admissible.

More specifically, the authors represent each curve γi as a discrete set of pixels pk
i , k = 0, .., ni,

where ni is the nunber of pixels in the on the curve. Dynamic programming recursively computes

the overall mapping cost. The cumulative cost between a pair of pixels on the two curves is defined

as:

Cdp(pk
0 , p

l
i) = D(pk

0 , p
l
i) + min

r∈Skl

Cdp(pk−1
0 , pr

i ), (2.2.3)

where

D(pk
0 , p

l
i) = dist2[pk

0 , eli 0(pl
i)] + dist2[pl

i el0 i(pk
0)]

and Skl contains all admissible values of r under the condition that pk
0 matches pl

i.

Once the alignment functions are obtained, then one can triangulate discrete set of corresponding

points s0 ∈ [a0, b0], followed by bundle adjustment to refine the 3D positions. The reconstructed 3D

points are essentially discrete ordered vertices. If a parametrized smooth 3D curve reconstruction is

required by the user, the authors use subdivision curves, optimizing their control points such that a

discrete set of samples project as closely as possible to the image curves.
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2.2.2 Binocular and Trinocular Stereo Using Curves

The goal of these papers is to find edge or curve correspondences across two or three well-calibrated

views, and reconstruct the curves based on these correspondences. The key bottleneck is the disam-

biguation of correspondences.

Initial work in this area consists in binocular stereo of curves [3,9,17,42,108,115,123]. However,

in the case of two views, real geometric constraints cannot be applied, due to the nature of curves

being localized in only one direction. Accordingly, all these methods are based on some sort of

heuristic similarity between the two views. This limits these methods to short baseline, a tight

depth range, and to scenes without too many depth discontinuities or branching structures. The

method by Arnold and Binford [3], for example, proposed the use of curve tangents to disambiguate

correspondences. The idea is that the tangents tend to be similar at corresponding points of two

matching curves. This, however, is only true for very short baseline and limited depth range. In

reality, any two tangent directions are possible, as we show in Chapter 3.

The idea that the differential geometry of curves can be used to correlate structure in three

images was presented in the work of Ayache and Lustman [8], who proposed a trinocular constraint

for matching line segments arising from edge linking. The main idea is that a 3D point and its

tangent reconstructed from a pair of potentially corresponding points and tangents in two views

determine a point and tangent in a third view, which can be compared to observations; see also [70,

136,141]. Robert and Faugeras [131] extended Ayache’s method of transferring points and tangents

from two views to a third to include curvature: 3D curvature and normal can be reconstructed

from 2D curvatures at two views, which in turn determine the curvature in a third view. This

leads to improved precision and density in the reconstruction since curvature provides an additional

constraint and reinforces figural continuity in propagating strong hypotheses to neighboring curve

samples. This allows then to discard the aforementioned use of heuristics such as binocular similarity

or the ordering constraint [117]. Schmid and Zisserman [133] also derived a formula for transferring

curvatures from two views to a third, using a projective geometry formalism in which the osculating

circle is transfered as a conic. The advantage of their approach is that the cameras don’t have to be

metrically calibrated – only the projective aspects of epipolar geometry are required.

Li and Zucker [94,95] derived formulas for the curvature of a projected curve from the curvature of

a 3D space curve. They also derived a system of linear equations for reconstructing 3D curvature from

2D, as previously done by Faugeras [131], but with a different proof. Their stereo method assesses

the compatibility of two neighboring point-tangent-curvature matches according to a cost, which is

then minimized through relaxation labeling. While tangents and curvatures can be reconstructed,

torsion cannot be constrained. Therefore their process minimizes the torsion of the resulting 3D

curve, assuming real-world curves tend to have low variation.

Another class of papers deals with stereo reconstruction using parametric models [11,30,34,34,

81,84,93,128,132,135,153,160].

The main drawbacks of previous work on curve-based binocular and trinocular stereo are:

• The use of biased heuristics in binocular stereo
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• The requirement of very precise calibration

Summary of Schmid and Zisserman 2000

This section reviews [133]. The paper deals with the problem of finding correspondence between

curve segments when 2 or 3 images from unknown cameras are available. The Fundamental matrix

or trifocal tensor is easily computable from interest points + ransac, but the intrinsic parameters

are not necessarily known. The classic approach is to discard these interest points and only use the

camera geometry in a subsequent stereo matching stage to disambiguate point correspondences along

epipolar lines. For 2 views, the standard method of computing point correspondences is using the

epipolar constraint, which limits the candidates to be in a narrow region, and the use of photometric

normalized cross correlation to further constrain the choice.

A central question answered here is: are there any additional constraints when not points but

point-tangents (edges) or in general curve geometry is available? Let us analyze the binocular and

the trinocular cases.

The binocular case. The correspondence search from photometric correlation can be signifi-

cantly reduced by using curve geometry (not arising from occluding contours) in a small neighbor-

hood. Consider a first-order (planar) approximation to the surface of the object on which the 3D

curve lies. The correspondence between the projections of this plane in two views is governed by

a homography of 8 free parameters. It is known that the fundamental matrix, which captures the

epipolar geometry, gives 5 constraints, reducing the homography to 3dof. Thus, the fact that a

point is matched unto a point on the epipolar line is already taken into account. Given the candidate

matches of a curve fragment along the epipolar line, each pair of matches gives 2 constraints on the

unknown variables: as the curves have to map to each other, (i) the position along the epipolar lines

defines one variable, since the 3D plane is constrained to pass through a 3D point reconstructed

from this information (up to 3D homography); and (ii) the matching tangents provide an additional

constraint, since the 3D plane also has to pass through the 3D tangent reconstructed from this

information (up to 3D homography). This leaves a 1-parameter family of solutions which can be

optimized by the degree of photometric correlation.

Among the remaining 1-parameter family of solutions, the authors propose that, instead of

optimizing photometric correlation, one can just pick the plane that coincides with the osculating

plane of the curve, which can be determined by using curvatures of the matching points. This is

just a heuristic – there is no guarantee that this is the tangent plane to the underlying surface, even

if the curve is planar. However, empirically the authors state that this solution was good enough to

rank-order the matches even in the above cases.

The question of how to get the osculating plane (and its associated homography) motivated

a result which is of more general interest. It is known that from the position and curvature of

corresponding edgels in two views, it is possible to estimate the osculating plane of the curve uniquely,

if the imaging calibration was fully known [46], as shown in Chapter 3. If only the fundamental
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matrix is known, the osculating plane can only be recovered up to a projective ambiguity, but its

associated homography can be fully recovered, and this is studied in this paper.

The trinocular case. The authors also propose a method for transferring the curvature from

two views onto a third, given the trifocal tensor (the full calibration is not needed). The inter-

pretation of the given formula is to use the reconstructed plane from two views (known up to 3D

projective ambiguity), and use that to get a homography relating the first two views to the third

one (this homography being independent of the intrinsic parameters). This homography then de-

fines a pointwise correspondence between any of the first two views to the third one. Faugeras and

Robert [49] were the first to propose the transfer of curvature from two uncalibrated views to a

third one, but they used pairwise fundamental matrices. The improvement over Faugeras’ method

proposed by Schmid and Zisserman is numerical stability and immunity to errors in intersecting

epipolar lines that are collinear or nearly collinear. The trifocal tensor handles these cases without

any imprecision.

Steps of practical system.

• Start with edge detection and linking in two or three views, and attempt to match whole

fragments of curves

• At a first stage, consider only curves that lie in the beam of epipolar lines of each other and

have consistent epipolar tangencies.

• At a second stage, attempt to find corresponding fragments of putative corresponding curves

by integrating edgel-to-edgel costs within possibly matching fragments.

• Using only the differential geometry of the curves provides constraints by transferring putative

edgel matches to a third view. This works even when the intrinsic parameters are unknown,

but ambiguity remains

• Further constraint can be found using appearance.

• For each putative match, find a correlation score by searching on a 1-parameter space if the

curvatures of the matches are low (only tangents are used), or using no search at all (osculating

plane) if the curvatures are above a threshold.

• A winner-take-all scheme picks the final matches

2.3 Occluding Contours for Surface Reconstruction in Video

As a matter of terminology, occluding contours in 3D are also called contour generators, while

projected contour generators are called apparent contours. The papers in this category have the

goal of reconstructing a local surface model (typically second-order) given the camera models for

each frame of a video sequence, together with observed apparent contours. The way an apparent
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contour deforms in the video as the camera moves can provide a local surface model as long as at

least three frames are used. Usually, a pointwise correspondence between the apparent contours

in each frame is established by intersecting corresponding epipolar lines with the curves. There

are other possible parametrizations, such as going along the normal to the curve to obtain the

corresponding curve point in another frame, although these are much less common than the epipolar

parametrization.

The main drawbacks of the literature in differential surface reconstruction from occluding con-

tours in calibrated video is are:

• Highly controlled acquisition, requiring the curves to be easy to segment and track in the

frames

• Lack of unified theory with other types of contours. Most papers deal only with occluding

contours, disregarding fixed curves, with exception of a single paper [98].

We now summarize the main papers in the literature.

Summary of Koenderink Occluding Perception 1984

This section reviews [88]. The main result of this paper is that the sign of the curvature of the

apparent contour equals the sign of the Gaussian curvature at the corresponding point of the contour

generator. Thus, parabolic points on the a surface correspond to inflections in the apparent contour.

This result is also valid for perspective projection. The conclusions of the paper come from two

mathematical results which will be derived below. For a brief overview, the reader can skip the

proofs.

Theorem 2.3.1. The Gaussian curvature K of the surface M, the curvature K̃γ of the apparent

contour under orthographic projection, and the radial curvature Kr, the normal curvature of M
along line of sight, are related by:

K = Kr · κ̃γ . (2.3.1)

Proof. Consider local object coordinates (x̄, ȳ, z̄) defined as:

x̄: along visual ray,

z̄: along normal to surface M,

ȳ: normal to both x̄ and ȳ directions.

Since we have orthographic projection, the ȳ − z̄ plane is parallel to image plane. We can write the

surface as z̄(x̄, ȳ), expanding to second order:

z̄ =
1
2
(ax̄2 + 2bx̄ȳ + cȳ2) + h.o.t. (2.3.2)

The contour generator is defined by the condition that the normal N (written in local coordi-

nates) is orthogonal to the viewing direction e1 along x̄:

e1 ·N = 0 (2.3.3)
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or

e1 · (−z̄x̄,−z̄ȳ, 1) = −z̄x̄ = 0. (2.3.4)

Thus, the equation

z̄x̄ =
dz̄

dx̄
= ax̄+ bȳ + h.o.t. = 0 (2.3.5)

defines the contour generator. The solution of this equation is a set of (x̄, ȳ) such that (x̄, ȳ, z̄) is in

the contour generator.

It follows that the contour generator is not orthogonal to the x̄ direction, but is conjugated to

it. The angle between these directions is given by tan−1(−a/b). From (2.3.5), we have ax̄ = −bȳ, so

x̄ = −bȳ
a
. (2.3.6)

Plugging into (2.3.2),

z̄ =
1
2
ac− b2

a
ȳ2 =

1
2
K̃γ ȳ2, (2.3.7)

which is the equation of the apparent contour to second order, giving the curvature K̃γ of the

apparent contour under orthographic projection as:

K̃γ =
ac− b2

a
. (2.3.8)

The radial plane is the x̄− z̄ plane (ȳ = 0), so that, neglecting third and higher order terms:

z̄ =
1
2
Kr, (2.3.9)

where

Kr = a. (2.3.10)

Using a formula for the Gaussian curvature of surface as a function z̄(x̄, ȳ) (Equation (A.3.39)), and

computing the required derivatives from (2.3.2), we obtain:

K = ac− b2 = Kr · κ̃γ . (2.3.11)

¥

The following theorem gives a similar result for perspective projection.

Theorem 2.3.2. The Gaussian curvature K, the radial curvature Kr at a point Γ of a contour

generator, and the geodesic image curvature κapp are related by:

κapp = ρ̂
K
Kr

, (2.3.12)

or

K =
κapp ·Kr

ρ̂
, (2.3.13)

assuming perspective projection, and where ρ̂ is the depth of the contour generator Γ along the visual

direction γ̂.
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Proof. The geodesic image curvature κapp is defined as follows. Consider a unit sphere around

the camera center, i.e., the manifold of visual directions. The contour generator projects to an

apparent contour on such a sphere. The geodesic image curvature is the curvature of the orthogonal

projection of such a contour onto the tangent plane to the viewing sphere at the considered point.

This is not the same as curvature of teh apparent contour for a planar image. However, according

to Koenderink, inferences of curvature sign from such formulas should apply to all cases.

Let us consider the osculating cone of visual rays, defined as the second-order cone that must

approximate the real cone of tangent rays to the surface M emanating from c. All osculating cones

envelop a sphere, called the Mannheim sphere [88,89]. For ρ̂→∞, the osculating cone degenerates

to a cylinder with radius K̃γ , which is also the radius of the Mannheim sphere. The cone also cuts

the unit image sphere in a circle of visual directions whose geodesic curvature is κapp. From simple

trigonometry, we have

κapp = cotα (2.3.14)

= ρ̂κ̃γ . (2.3.15)

Now, using Theorem 2.3.1, we can substitute Kr to get the desired result. ¥

The curvature Kr always has the same sign along a contour generator because the visual ray

can not run through the material of the surface, which is assumed to be opaque. Hence, from the

formula for K in (2.3.12), we conclude that the sign of the Gaussian curvature equals the sign of

the curvature at the apparent contour. Inflexions on the apparent contour correspond to parabolic

points in the surface. Also, if the apparent contour is convex, then the 3D point is elliptic, and if

the apparent contour is concave, the 3D surface point is hyperbolic.

Summary of Giblin and Weiss ICCV 1987

This section reviews [60]. This is the pioneering paper of silhouette-based reconstruction from

continuous viewer motion. Even though the paper was surpassed by later works, it has a strong

historical value.

The method exploited multiple silhouettes to reconstruct shape under continuous camera motion.

The camera motion is restricted to be planar, and the projection is orthographic. Throughout the

paper, only synthetic examples are given, with no real-life application. A pioneering idea was that

a smooth surface is the envelope of its tangent planes obtained from the apparent contours. They

reduced this problem to one of computing the envelope of tangent lines in a plane. The authors also

reconstucted depth, Gaussian and mean curvatures along occluding contours.

Summary of Cipolla Blake IJCV 1992

This section reviews [24]. This paper is the main source of basic results of occluding contours

under continuous viewer movement. Cipolla’s PhD thesis [25] covers this paper and contains addi-

tional details, while most of Cipolla and Giblin’s book [27] presents these results as well, with some
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complementary theoretical details, but with less experiments than the thesis and the paper.

The main contributions of the paper are outlined below:

• Extended the preliminary work of [60] (which we outlined in Section 2.3) to perspective pro-

jection, a real-world application, and detailed implementation.

• Introduced the epipolar parametrization.

• Studied Parallax-based measurements that can be more robustly computed than direct mea-

surements of position and its first and second-order spatio-temporal derivatives. The idea is to

take spatial derivatives of measurements instead of isolated ones, so that errors due to global

effects tend to cancel-out.

• Provided error and sensitivity analysis for the proposed formulas

• Devised a simple application to discriminate viewpoint-dependent and viewpoint-independent

contours

The paper uses spherical images instead of planar images, arguing that this is a powerful analytical

tool that simplified the process of extending the theory of [60] to perspective projection. In this

thesis, we translate the results to planar perspective.

The authors derived a depth formula for differential motion and showed it to be independent of

the surface curvature.

Conjugacy of Contour Generator and View Direction

The viewline in the direction of γ is tangent to the surface M at the contour generator Γ; this is

what defines the contour generator. On the other hand, the tangent Γw
s to the the contour generator

at the point Γ, being a curve of M, has to be tangent to the surface as well. Thus, both the vectors

are in the tangent plane. An interesting discussion comes from the following question. Given the

viewing direction γ ∈ TΓ(M) (i.e., in the tangent plane to M at Γ), what is the direction Γw
s

along the contour generator? These directions are shown in the paper not to be orthogonal, but

are instead said to be conjugate. Conjugacy is a type of generalized orhogonality and is invariant

to projective transformations, as reviewed in Section A.3.1. These results are summarized in the

following theorem.

Theorem 2.3.3. Consider a point Γ of the surface M lying on a contour generator relative to a

camera center c. The visual direction γ̂ and the tangent direction to the contour generator T are

conjugate directions, i.e.,

dN(T ) · γ̂ = T · dN(γ̂) = 0. (2.3.16)

Proof. Using the epipolar parametrization Γw(s, t), the vector Γw
s is along the contour generator

tangent, and Γw
t is along the visual direction, as introduced in Section 3.2. The condition for

conjugacy using dN(T ) = Ns translates to

(Γw − c) ·Nw
s = 0, (2.3.17)
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where Nw
s = ∂

∂sN
w ◦ Γw(s, t). Differentiating (Γw − c) ·Nw = 0 with respect to s, we get

Γw
s ·N + (Γw − c) ·Ns = 0. (2.3.18)

Since Γw
s is in the tangent plane, we have Nw · Γw

s = 0, so that

(Γw − c) ·Nw
s = 0. (2.3.19)

¥

Corollary 2.3.4. For the epipolar parametrization, the tangent vectors {Γw
s ,Γ

w
t } are conjugate.

Therefore, the matrices of the first and second fundamental forms in the unit basis along these

vectors are given by:

I =

[
1 cos θ

cos θ 1

]
, II =

[
Ks 0

0 Kt

]
, (2.3.20)

where: θ is the angle between Γw
s (along the visual direction) and Γw

t (along the contour generator

tangential direction); Kt is the normal curvature of the t-parameter curve Γw(t) = Γw(s0, t), which

is the curvature of the normal section at the point Γ in the visual direction; and Ks is the normal

curvature of the contour generator Γw(s) = Γw(s, t0).

Proof.

I =

[
E F

F G

]
=

[
Γ̂

w

s · Γ̂
w

s Γ̂
w

s · Γ̂
w

t

Γ̂
w

s · Γ̂
w

t Γ̂
w

t · Γ̂
w

t

]
, (2.3.21)

where Γ̂
w

s = Γw
s /‖Γw

s ‖ and Γ̂
w

t = Γw
t /‖Γw

t ‖, since we are taking a unit basis along Γw
s and Γw

t .

Therefore, Γw
s · Γw

s = Γw
t · Γw

t = 1 and Γw
s · Γw

t = cos θ.

The second fundamental form, in the same basis, can be written as:

II =

[
e f

f g

]
=

[
Γ̂

w

s · dN(Γ̂
w

s ) Γ̂
w

s · dN(Γ̂
w

t )

Γ̂
w

s · dN(Γ̂
w

t ) Γ̂
w

t · dN(Γ̂
w

t )

]
. (2.3.22)

Since we know that Γ̂
w

t and Γ̂
w

s are along conjugate directions, then f = Γ̂
w

s · dN(Γ̂
w

t ) = 0 by

definition. Since we are taking unit basis vectors, the off-diagonal elements can be written as

e = II(Γ̂
w

s , Γ̂
w

s ) = Ks and f = II(Γ̂
w

t , Γ̂
w

t ) = Kt. ¥

From the previous corolary, the first and second fundamental forms are fully determined by the

unknowns θ, Ks and Kt. These can be computed from viewer motion up to second-order. The

formulas for these entities become simpler if we use spherical image projection, i.e., γ̂ = γ/‖γ‖ as

our image point, and Γ = ρ̂γ̂ as the projection equation. The following proposition is useful to

convert expressions for θ, Ks, and Kt from spherical image projection to planar image projection.

It is given in this thesis but not in the original papers by Cipolla and Giblin.
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Proposition 2.3.5. (Relating planar and spherical image measurements) The depths ρ̂ and ρ are

related by:

ρ̂ = ρ‖γ‖, (2.3.23)

and their derivatives ρ̂s and ρs are related by:

ρ̂s = ρs‖γ‖+ ρ
γ

‖γ‖γs (2.3.24)

Given a measurement of γs in planar image projection, the corresponding measurement γ̂s in spher-

ical image projection is given by:

γ̂s =
‖γ‖2γs − (γ · γs)γ

‖γ‖3 . (2.3.25)

Proof. The first equation comes from Γ = ρ̂γ̂ = ργ. The second comes from differentiating the first

one with respect to s:

ρ̂s = ρs‖γ‖+ ρ
d

ds
‖γ‖, (2.3.26)

where
d

ds
‖γ‖ =

d

ds
(γ · γ)1/2 =

γ

‖γ‖ · γs. (2.3.27)

The third equation of the proposition is obtained from

γ̂s =
d

ds

(
γ

‖γ‖
)

=
1

‖γ‖2
(

γs‖γ‖ − γ
d

ds
‖γ‖

)
(2.3.28)

and using (2.3.27). ¥

We can now translate any formula that is based on spherical image projection, to one based on

planar image projection.

Theorem 2.3.6. The angle θ between the viewing direction γ and the tangent to the contour gen-

erator Γs is given by:

tan θ =
ρ̂‖γ̂s‖
ρ̂s

, (2.3.29)

where γ̂, ρ̂, and their derivatives are given by Proposition 2.3.5.

Proof. Differentiating Γ = ρ̂γ̂ with respect to s

Γs = ρ̂sγ̂ + ρ̂γ̂s, (2.3.30)

and taking the dot product with the viewing direction γ̂, we have:

Γs · γ̂ = ρ̂s, (2.3.31)

where we used γ̂s · γ̂ = 0 since γ̂ · γ̂ = 1. We then have

cos2 θ =
(Γs · γ̂)2

‖Γs‖2 =
ρ̂2

s

ρ̂2
s + ρ̂2‖γ̂s‖2

. (2.3.32)
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This is related to the tangent of θ by

tan2 θ =
1− cos2 θ

cos2 θ
=

1
cos2 θ

− 1 =
ρ̂2

s + ρ̂2‖γ̂s‖2
ρ̂2

s

− 1, (2.3.33)

which gives the desired formula. ¥

The required derivative of depth in Theorem 2.3.6, ρs, is obtained in [25] by numerically differ-

entiating the reconstructed ρ for neighboring points.

Theorem 2.3.7. The curvature Ks of the surface M in the direction of the contour generator Γ

and the transverse curvature Kt, which is the sectional curvature in the direction of the visual ray

γ̂, are given by:

Kt =
ct ·Nw

ρ̂(ct · γ̂ + ρ̂t)
(t = 0) (2.3.34)

Ks =
κapp sin2 θ

ρ̂
, (2.3.35)

where κapp is the curvature of the apparent contour:

κapp =
γ̂w

ss ·Nw

‖γ̂w
s ‖2

. (2.3.36)

From θ, Kt, Ks, we can write the formulas for the usual curvatures of the surface:

K =
κappKt

ρ̂
(2.3.37)

H =
1
2

[
κapp

ρ̂
+Kt csc2 θ

]
(2.3.38)

κ1,2 = H±
√
H2 −K (2.3.39)

The paper [24, p. 92] also provides a very big formula giving ρt in terms of γw
tt, ctt, and Ωt.

Parallax-based measurements (outline). The idea is that formulas involving spatial deriva-

tives of measurements are more rubust than formulas for pointwise measurements, since they tend

to cancel-out common uncertainties. If we write the velocity formula 3.5.14 for two nearby points

and subtract them, we get:

γ̂t1 − γ̂t2 → [(ct × γ̂)× γ̂]
(

1
ρ̂2
− 1
ρ̂1

)
(2.3.40)

This idea is due to [100], and Cipolla and Blake extended it to the rate of parallax. Thus, the

Radial curvature becomes insensitive to Ω, Ωt, and ctt, but it can only be determined relative to a

neighboring one. If the neighboring point is viewpoint-independent, then the absolute curvature at

an occluding point can be robustly measured.
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Implementation of Theory (outline). The system was implemented as a robot arm with

a camera, all the imaging parameters being known. The trajectory was approximately linear.

Snakes/active contours were initialized by hand on the first hand and tracked. The epipolar ge-

ometry is then used for matching (the details of this were not given). Parabola fitting is used to

compute temporal derivatives. Reconstruction errors were only given for the radius of tranversal

curvature.

Summary of Vaillant Faugeras PAMI 1992

This section reviews [150]. We first give the outline of the method, and then explain some important

details.

Outline of the method: A static scene is observed by three static cameras very close to each

other, and the goal is to obtain second-order reconstruction of points around contour generators. The

edges are detected using Canny, linked and approximated as polylines. Epipolar geometry is used to

match edges. All candidate correspondences are considered at first, and each one corresponds to a

putative 3D point. The authors devise criteria for identifying putative contours that are ‘occluding’,

based on rough estimate of normal curvature Kr along the visual ray. At occluding contours, they

refine depth using rough estimate of Kr. The surface curvatures are re-estimated by computing

derivatives, which are obtained by performing surface fitting in the Gauss map orientation space.

The Gauss map is a field of normals on the surface (see Appendix A for a review). First, the

authors parametrize the Gauss Map using spherical coordinates:

N(θ, φ) = (cos θ cosφ, sin θ cosφ, sinφ)> (2.3.41)

One can, then, parametrize the surface by its normals: Γ(θ, φ) is the surface point whose normal

is N(θ, φ). This is in a neighborhood of all surface points, except at parabolic points, for which an

arbitrarily close neighboring point can have the same normal.

The space of measurements: Each image point with attributed tangent gives a tangent

plane. The equation of this tangent plane is defined by:

Nw(θ, φ) · Γw(θ, φ)− p(θ, φ) = 0, (2.3.42)

where p is the distance from the plane to the world origin. The derivatives of p are shown to be

related to the derivatives of Γw and, ultimately, to the first and second fundamental forms of the

surface M.

The authors devised a numerical method to compute the derivatives of p, thus enabling the

computation of the first and second fundamental forms. For each view, each image curve traces a

measurement curve in (θ, φ, p) parameter space. A surface fitting is then performed in this parameter

space. Since the parameters θ, φ are periodic, Fourier interpolation is used.
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Contour Classification: The problem with applying the aforementioned ideas is that we don’t

know if a given image curve is the projection of a contour generator. Therefore, we have to find a

method for identifying edges that are apparent contours.

The authors devised a rough method to identify potential occluding contours. Only one normal

curvature Kr is used, which is along the visual direction. To estimate it, three matching viewing

rays are projected onto the radial plane being considered (the radial plane is the plane that contains

the viewing ray and the surface normal). The normal curvature at a radial plane is then obtained

by constructing an osculating circle tangent to the three rays. The contour classification then boils

down to testing the probability of a putative 3D point having non-zero Kr. The uncertainty is

approximately modeled from image localization noise, and no camera uncertainties are considered.

If a point is classified as an apparent contour, the depth is refined as the point of contact of

the rough osculating circle constructed in the classification stage. Now we can obtain measurements

(θ, φ, p) as mentioned above and estimate the surface curvatures. The result is a sparse reconstruction

with small patches of osculating paraboloids (second-order approximations) around 3D positions.

Summary of Zheng PAMI 1994

This section reviews [163]. We first give the outline of the method without much detail. After that,

we explain only the main points in more detail.

Main contributions:

• Contribution 1: Reconstruction of global 3D models. Previous methods only recovered small

patches. A sequence of images is acquired from turntable motion. Typically, the radius of

rotation is 0.5 meters and full 360× 1◦ rotation steps are performed around the object. Only

silhouettes (outermost contour generators) are used in the implementation.

• Contribution 2: The method detects where reconstruction from silhouettes is not possible:

concave regions, normal discontinuities, etc. Spatio-temporal derivatives are computed adap-

tively by first detecting discontinuities, and then computing the final values without crossing

over the discontinuities. The detection of regions where silhouette reconstruction breaks down

is useful, and the authors suggest the use of other cues in those cases, such as surface markings,

shape from shading, and detection of internal occluding contours.

• Contribution 3: “Scanline parametrization”: Instead of epipolar parametrization, Zheng pro-

poses a parametrization where the same raster line (image row) is used to match apparent

contours between multiple views. This makes matching very simple in practice, although it

complicates much of the mathematics.

The reconstructed surface is represented by triangular patches. These are generated by first

reconstructing a point cloud, and then connecting neighboring points with triangles. No curvature

is recovered, only orientation. The practical reason the authors give to this is that the computation

of the required second-order derivatives is unfeasible. However, it seems that there is a theoretical
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reason as well – that the curvature formulas would be too complicated for the proposed parametriza-

tion. We recall that, for the epipolar parametrization, the curvature formulas simplify because the

coordinate curves are in conjugate directions. However, the directions of the coordinate curves pro-

posed by Zheng are more complicated, even though the matching is simpler. The reason Zheng

didn’t use pairwise epipolar geometry is to save computation time, and also because he claimes its

computation is innacurate for a dense image sequence. In my opinion, even though his parametriza-

tion is seemingly practical because there is no need to rectify the images, it may not be the best

option for computing surface curvatures.

It is not clear what reconstruction errors are involved. What would be the reconstructed 3D

point? What is the advantage over using a standard triangulation? This should be more emphasized

in this and other papers. Until now, the only reason for using silhouettes in this method (and many

others) is that they are easy to detect under controlled conditions, and that it is easier to reconstruct

even when there are no surface markings to track.

The surface can be parametrized by Γ(s, t). The “s-curve” is the curve obtained by varying s

and fixing t = t0, given by Γ(s) = Γ(s, t0). The t-curve is the one obtained by varying t and keeping

s = s0 fixed, Γ(t) = Γ(s0, t). As explained in Section 3.2.5, the s-curve is generally the contour

generator corresponding to the view at t = t0. The choice for the t-curve is arbitrary. Zheng’s paper

picks the t-curve as the space curve on M that projects to the same scanline on different images.

At two different instants t = t0, t = t0 + dt, we have that if Γ(s, t) projects to the scanline with

coordinate η = η0 of the image at t = t0, then Γ(s, t + dt) will project to the scanline η0 of the

image at t = t+ dt, for dt→ 0. Thus, ∂η
∂t = 0 for this parametrization, where η(s, t) is the vertical

coordinate of the projection of Γ(s, t), i.e., η(s, t) = y(s,t)
z(s,t) assuming a calibrated camera (so that

focal length is normalized to unit).

The measurement space can be visualized as a sequence of stacked silhouettes through time,

called the spatio-temporal volume. For each fixed η, the intersection of the t − ξ plane with the

observed silhouettes is called the “t image curve”. For each fixed t, the silhouette observed in each

image at time t is called the “t image curve”. The cameras all look into the axis of rotation, so it is

projected as a ξ-constant plane in the spatio-temporal volume.

The authors derived a depth reconstruction formula for the scanline parametrization, which we

reproduce below using our notation. We start with two basic equations – the occluding contour

condition and the normal equation:

(Γw − c) ·Nw = 0 (2.3.43)

Nw = R> γ × γs

‖γ × γs‖
(2.3.44)

which are derived in Section 3.2.5. For convenience, we use the vector Ñw in the same direction of

Nw but without the normalizing factor:

(Γw − c) · Ñw = 0 (2.3.45)

Ñw = R>(γ × γs) . (2.3.46)
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Differentiate the occluding contour equation with respect to s and t:

(Γw − c) · Ñw = 0 (2.3.47)

(Γw − c) · Ñw
t + (Γw

t + ct) · Ñw = 0 (derivative with respect to t) (2.3.48)

(Γw − c) · Ñw
s + Γw

s · Ñw = 0 (derivative with respect to s) (2.3.49)

Using Γw
t · Ñw = Γw

s · Ñw = 0, we have:

(Γw − c) · Ñw = 0 (2.3.50)

(Γw − c) · Ñw
t + ct · Ñw = 0 (2.3.51)

(Γw − c) · Ñw
s = 0, (2.3.52)

which gives three equations in the unknown Γw = (xw, yw, zw)>. In other words, Γw is determined

as the intersection of 3 planes, whose normals are Ñw, Ñw
s , and Ñw

t , respectively. We compute Ñw
s

and Ñw
t by differentiating Equation (2.3.44):

Ñw
t = R>t (γ × γs) +R>(γt × γs + γ × γst) (2.3.53)

Ñw
s = R>(γ × γss) (2.3.54)

We can plug the general formulas for Ñw, Ñw
t and Ñw

s into (2.3.50):

(Γw − c) · R>(γ × γs) = 0 (2.3.55)

(Γw − c) · [R>t (γ × γs) +R>(γt × γs + γ × γst)
]
+ ct · (γ × γs) = 0 (2.3.56)

(Γw − c) · R>(γ × γss) = 0. (2.3.57)

Since Zheng chooses t to be the rotation angle of the turntable, R has a simple form which can be

trivially differentiated. However, to keep the formulas general, we will indicate the derivative of R
by Rt. Furthermore, Zheng models the apparent contour as a function of η,1 i.e., the parameter

s = η, so that

γ(s, t) = (ξ(s, t), η(s, t), 1)> = (ξ(s, t), s, 1)>. (2.3.58)

Thus, γs = (ξs, 1, 0) and γt = (ξt, 0, 0). These identities can be used to get a specific reconstruction

formula, which is not reproduced here because it is just an arbitrary specialization of the formulas

above.

In summary, the overall strategy for obtaining the reconstruction formula is: (i) differentiate

the occluding contour condition with respect to t and s, obtaining two more equations dependent

on derivatives of Ñw; (ii) Compute these derivatives Ñw
t and Ñw

s from the normal formula and plug

them in the equations we had. We will end up with three equations involving Γw as three unknowns,

all else being observables.

1It is being assumed that image curves as 2D functions of η. The t image curves are badily sampled when
the tangent to the s curves are nearly horizontal, i.e., for high ‖dη/ds‖
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Summary of Joshi et. al. IJCV 1999

This section reviews [80]. A trinocular stereo rig observes a scene. The relative pose of these 3

cameras is known, and the overall motion of the rig plus 3D structure are recovered by the method.

A local paraboloid is used to model the surface around the point of a contour generator. This model

can be estimated using the trinocular rig at a single time instant, using a similar technique to [150].

The method breaks down for points near frontiers. The motion parameters are refined by a downhill

simplex numerical scheme; given the current motion solution, it minimizes the difference between

(i) predicted matches using epipolar geometry, and (ii) paraboloid-induced matches.

Initial solution to camera motion: The initial solution to the motion of the trinocular

rig is obtained by tracking apparent contour inflections. As shown by [88], these inflections are

projections of parabolic points of the surface M. It is shown that a constraint can be imposed on

the rotation. This constraint involves the known asymptotic direction and the known normal. The

initial translation is very coarsely initialized by the following procedure. First, the epipolar plane is

roughly estimated from the current estimate of rotation, as if we had orthographic projection. From

this, epipolar tangencies can be matched, and the translation is solved-for linearly.

The classification of edges is performed before applying the aforementioned reconstruction ap-

proach, and proceeds as follows. First, from two views, reproject into a third; if the predicted

position is too far from the expected one, then mark the edge as an apparent contour edge.

Summary of Szeliski Weiss IJCV 1998

This section reviews [143]. The method assumes a linear camera motion path. The epipolar plane is

used for the estimation of the radial curvature Kr. The main contribution is the robustness of the

method. Tools like Kalman filtering and smoothing are used in order to make optimal use of each

measurement.

Summary of Boyer Berger IJCV 1997

This section reviews [16]. The authors propose a more careful numerical scheme for computing

the depth at apparent contours. Many methods discretize the depth formula directly, but this is

equivalent to treating the underlying contour generator as fixed in 3D. Therefore, there would be no

advantage of using occluding contours here, as far as precision of depth reconstruction is concerned.

A more precise formula is possible that takes advantage of the occluding contours and the information

they provide about the curvature of the underlying surface.



40

2.4 Other Works Using Curves

Summary of Carceroni and Kutulakos CVPR 1999

This section reviews [22]. This paper deals with video sequences of rigid or non-rigid curves observed

by two or more cameras over time. Given a calibrated multi-view video of a non-rigid moving curve,

the goal of the paper is to find its 3D shape and motion (3D velocity). A special case is a multiple

camera rig moving rigidly observing a static curve, where the goal is to estimate the 3D curve and

the motion of the camera rig. The paper explores usual multiview constraints at each time instant,

together with a spatio-temporal constraint which hasn’t been used before.

Similar ideas were later used for local surface patches by the same authors [23]. Material related

to those papers also appeared in [21]. According to the authors, previous work either dealt only

with monocular sequences of contours [48], or used plain multiview stereo at each time instant,

without relating different instants to constrain the problem. Note, however, that this is not strictly

true, since [48] does have a section that deals with a stereo rig observing curves, see a review in

Section 2.1.2.

An outline of the proposed practical system is as follows:

• Pick a reference time t = 0 and a reference viewpoint, and one curve point γ.

• For each curve point, epipolar geometry at t = 0 gets corresponding points across frames

• Linear recosntruction of Γ minimizing distance to 3D rays.

• For the next time instant t = dt, look around γ in the reference view for candidate curve

points, and for each candidate

– Use epipolar geometry and triangulate Γ at t = dt

– Write a spatio-temporal consistency equation for each view:




unknowns: Γw(t = 0), Γw
t (t = 0)

observables: γ, β, n, t, R(i), T (i),
(2.4.1)

where super indices represent view number.

For a fixed time instant, it is obvious that the constraint is the usual stereo / epipolar constraint:

each 3D point of Γ must project into the observed ones; or, equivalently, the correspondences must be

along epipolar lines. How do the authors derive a temporal constraint at different time instants? In-

tuitively, this would consist in writing spatio-temporal constraints for each viewpoint’s video stream,

and intersect these equations for all viewpoints. Lets delve one more level of detail and see how the

authors do it.

As we described in Section 2.1.2, only the normal component of γt is observable, which we

denote γN
t = βn. It can be shown (although not done in the paper) that the 3D component NV

of the 3D velocity Γw
t is completely determined by the 2D point γ, βn, and the camera. The 3D
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point Γ can be obtained through stereo at the given time instant. Knowledge of NV constrains the

3D point Γ̃(dt) = Γ0 + Γw
t (0)dt to be on a plane, called the motion constraint plane.

More specifically, in 3D, Γw
t can be decomposed into

Γw
t = T V + NV , (2.4.2)

defined for the camera center c(t) (sub-index is needed if more than 1 camera at time t). The

tangential component T V is defined to lie on the plane defined by γ and the 3D tangent T to Γ.

The normal component is defined to NV lie along γ × t.

Observation 1. (no proof in the paper) Γ̃(dt) is contained in a so-called motion constraint

plane completely determined by Γ, γ, and βn.

Observation 2. If we use multiple cameras at the same time instant, then there are multiple

motion constraint planes all intersecting on the same line. This line contains Γ̃(dt) and is parallel

to the curve’s tangent T at Γ. It is called the multiview constraint line.

As we said, there are two types of constraints to reconstruct 3D structure and motion at a given

reference time instant t = 0:

1. stereo constraint: Γ(0) must project to its images γi(0) in all views, i = 1, . . . , nv.

2. motion constraint: Γ(0) + Γt(0)dt must lie on Γ’s multiview motion contraint line.

The two constraints are coupled, since the motion constraint line depends on the 3D position Γ.

In practice: find Γ, Γ̃(dt) that minimize their least squares distance from appropriately chosen 3D

lines that represent the stereo and motion constraints at Γ. This is a 3D-error minimizing approach,

rather than a maximum likelihood approach that minimizes 2D image-based errors. The advantage

of the proposed approach is the solvability through simple linear systems. In light of this, we can

rephrase the constraints:

1. stereo constraint: Find the 3D point Γ that minimizes the perpendicular distance to 3D

rays through its observed projections γ. This is expressed by a linear system in Γ.

2. motion constraint: This is also expressed as a linear system in the unknowns Γ and Γ̃(dt),

as demonstrated in the appendix of the paper.

3. stereo + motion constraints: The motion and stereo constraints are combined into a

single linear system, since both share the same unknown Γ. The system is over-constrained:

8 constraints on 6 unknowns.

The authors first detect and link edges in each image, and find putative corresponding points

in 3 views using the known epipolar geometry. For each putative point correspondence, the paper

proposes to solve the combined linear system independently, 3D point and motion hypotheses. The

conjectured 3D points are rank-ordered by the residual in the system solution (although image-based

would have been better). In summary: they are using spatio-temporal information to improve 3D
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Figure 2.4: Figure illustrating how the stereo and motion constraints are used in [22].

reconstruction and disambiguate matches. It could even be used for tracking. (See the algorithm

description in the paper).

Stereo matching and disambiguation is done both in fixed time, and across time. One way to

interpret the practical implementation of this system is:

1. For t = 0, multiview correspondence gives Γ(0) by stereo reconstruction.

2. For t = dt, multiview correspondence gives an approximate Γ̃(dt) by stereo reconstruction.

Pick Γ(dt) minimizing stereo-motion constraints.

Note that the paper does not deal with any ambiguities in stereo for a fixed time instant – it

is assumed one can determine the correspondences unambiguously. The only ambiguity arises when

searching for the corresponding image point in the next frame.

Experiments on synthetic data with added noise show that the method provides slight improve-

ments on the precision of reconstruction when compared to pure stereo approach. This suggests

that a coupled estimation of shape and motion counteracts 3D shape errors due to the localization

of individual projected curve points. More specifically, since errors due to localization are generally

independent aross images, the coupled estimation of shape and motion allows the inclusion of im-

ages from multiple time instants in the shape estimation process, providing additional independent

constraints to counteract localization errors.

Derivation of the motion constraint plane. The motion constraint plane is just a single

temporal equation in the 3 unknowns of Γt that has to be satisfied at a view, with coefficients given

by measurable quantities (normal motion). As usual, let super-indices denote the view number.

Then:
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Γ(i) = ρ(i)γ(i) (2.4.3)

R(i)Γw + T (i) = ρ(i)γ(i). (2.4.4)

Differentiating both sides with respect to time,

R(i)Γw
t + T (i) = ρ

(i)
t γ(i) + ρ(i)γ

(i)
t . (2.4.5)

Taking the dot product with γ(i) × t(i),

(R(i)Γw
t + T (i))>(γ(i) × t(i)) = (ρ(i)γ

(i)
t )>(γ(i) × t(i)). (2.4.6)

Expand γt = (βn + αt), so that

(R(i)Γw
t + T (i))>(γ(i) × t(i)) = (ρ(i)βn)>(γ(i) × t(i)). (2.4.7)

Γw>
t R(i)>(γ(i) × t(i)) + T (i)>(γ(i) × t(i)) = ρ(i)β(i)n(i)>(γ(i) × t(i)) (2.4.8)

and, since ρ(i) = e
(i)>
3 (R(i)Γw + T (i)), we have

Γw>
t R(i)>(γ(i) × t(i)) + T (i)>(γ(i) × t(i)) = e

(i)>
3 (R(i)Γw + T (i))β(i)n(i)>γ(i) × t(i) (2.4.9)

The latter expression is an equation involving the unknowns Γw and Γw
t , whose coefficients are only

measurable quantities in the image (including normal velocity). It is called the “motion constraint

equation” because, if Γw is given, then it is a single linear equation in the 3 coordinates of Γw
t ,

which can be interpreted as a plane. Therefore, it seems that three frames would be sufficient to get

the full Γw
t . Note, however, that we know that Γw

t is ambiguous, and only its normal component

can be unambiguously defined! A more careful inspection of the above equation shows that at

each view, γ and t contains the 3D tangent T . For each view, the component of Γw
t along T is

unconstrained. Thus, we are determining only the component of Γw
t that lies in the plane having

normal T . Therefore, two views should be enough, as only 2dof can be determined for Γw
t . The

remaining 1dof ambiguity is the motion constraint line mentioned in the paper. It cannot be

resolved no matter how many views are used.

Summary of Ebrahimnezhad and Ghassemian IVC 2008

The paper [37] proposes a method of reconstructing 3D objects by moving them in front of a

calibrated system of two stereo heads perpendicular to each other. First, curves are detected in each

image, then matched across frames of the same stereo head using curvature and torsion temporal

consistency, generating 3D curves at the current instant. The motion parameters (rotation and

translation) are then iteratively estimated such that the 3D curves project to image edges in the

next time instant. The rotation and translation then allows to generate virtual cameras, from which

the silhouettes are reprojected in 3D and the visual hull of the object is constructed.
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The curves are used in order to obtain a photometrically-robust matching and motion estimation.

Once the motion is estimated, the curves themselves are not reconstructed for the final model, only

the visual hull.

The correspondence of curves between two views is disambiguated using both epipolar geometry

and temporal consistency: at each time instant, any two curves can go together, but only the right

correspondence can be described by a global 3D rigid motion through time. Since curvature and

torsion are rigid motion invariants, they are used in order to compare putative space curves at

each time instant – thus a temporal curvature and torsion consistency is enfoced. For the curves

that match, a bundle adjustment scheme on the rotation matrix and translation vector between the

current frame and the next one is estimated, with the reprojection error being defined as smallest

distance to image curve points.

The perpendicular stereo configuration is designed in a way that minimizes the uncertainty in

the motion estimation. No edge or correspondence information is used across the stereo heads; the

motion is estimated in a global coordinate frame, but reprojection is always being measured within

the same stereo head.



Chapter 3

Multiview Differential Geometry of

Curves

3.1 Introduction

The 3D reconstruction of scenes from images taken from multiple cameras or a moving camera

is a fundamental problem in Computer Vision. The reconstruction requires a knowledge of the

correspondence of image structures across views, the relative pose of cameras, and their intrinsic

calibration parameters. The latter two problems in turn require the knowledge of correspondence for

a certain number of structures. The question then is: what sort of image structure can be reliably

correlated across images, in the sense that correlated image structures should arise from the same

3D structure? One approach is to consider the correspondence at every point of the image. Another

approach is to extract and correlate isolated keypoints (interest points). Yet another approach relies

on the extraction and correlation of curvilinear structures in the form of curve fragments or complete

silhouettes. These three main approaches can be viewed as correlating 2D, 0D, and 1D structures,

respectively, each of which is summarized below.

1) Keypoint-based methods extract a set of isolated point features which are expected to

be somewhat stable with view variations. These interest points became popular in a paradigm

shift away from full segmentation of the image and toward capturing some essential, quasi-invariant

representation that can be used in multiview geometry and object recognition. Specifically, points

that satisfy certain local conditions in the spatial and scale dimensions, such as Harris corners [67,112]

and sift [101], etc., are extracted (see review [110]), and attributed with a local description of the

image relative to the scale of the interest point (see review of local descriptors [111]). While many

of these attributed feature points are not stable with view changes in that they disappear/appear or

change in location or description, sufficiently many are stable enough to drive a matching process.

The selection of the right subset to match is handled by trying small groups of features through

ransac [54], which can then be validated by enumerating the number and quality of the inliers in

45
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the remaining features. This set of correspondences is then used to initialize camera models, which

are in turn refined through bundle adjustment [1, 69,125].

A major drawback of using interest points for reconstruction is that they are sparse, resulting

not in a mesh but in an unorganized cloud of 3D points where the geometric structure of the under-

lying curves and surfaces is not explicit, Figure 3.1(a). This is not much of a problem if the focus

is on calibrating the viewpoints as in Phototourism [1]. However, in numerous applications such

as modeling for architecture, archaeology, entertainement, object recognition, and robotic manip-

ulation, the explicit 3D object geometry is required.1 A second major drawback of using interest

points is that the baseline between views is typically limited, according to some estimates no greater

than 30◦ [113], Figure 3.1(b). In contrast, certain curve features, such as sharp ridges on a building,

persist over a much greater range of views. A third major drawback is that the approach relies on

an abundance of features so that some of them survive the various variations between views. While

this is true in many scenes, as evidenced by the popularity of this approach, in numerous others

this is not the case, such as (i) Homogeneous regions, e.g., from man-made objects, corridors, etc.,

Figure 3.1(c,d); (ii) Multiple moving objects require their own set of features which may not be

sufficiently abundant without sufficient texture, Figure 3.1(e); (iii) Non-rigid objects require a rich

set of features per roughly non-deforming patch, Figure 3.1(f). In all these cases, however, there is

sufficient image curve structure, motivating augmenting the use of interest points with that of image

curve structure.

2) Pixel-based multiview stereo methods aim to correlate each image pixel in each view so that

a dense and detailed 3D surface can be reconstructed with explicit geometric neighborhood structure

in the form of a mesh (see [134] for a review). In volumetric approaches [74, 97], visibility and

photometric consistency of the observed image patches are estimated for each voxel of a predefined

3D volume containing the object of interest, and a final surface is then extracted from this volume.

Other techniques iteratively evolve an initial surface for optimizing photo-consistency. The initial

surface is usually a simple shape containing a predefined working volume around the object, or is

obtained using the visual hull as described in the class of curve-based methods below. Surfaces

are evolved either as level-sets, as meshes/snakes, or by carving or adding voxels. Some methods

combine the volumetric and surface evolution approaches with the use of a silhouette consistency

term [74]. Another class of techniques is the image-space methods that compute a set of depth

maps where the intensity pattern around each pixel is used for finding dense correspondence across

multiple views. These depth maps are then merged into a 3D scene [61,134].

Pixel-based multiview stereo methods have a number of drawbacks. First, all these methods

require a large number of precisely calibrated cameras. Second, they require that the object of

interest be within a working 3D volume/bounding box or within multiple near/far planes, and thus

cannot usually handle general scenes or acquisition scenarios (e.g., a handheld camera acquiring an

1Some approaches mesh a 3D point cloud, particularly using Poisson surface reconstruction [87] where
normals are computed at each 3D point using patch-based multiview stereo techniques [58]. However,
this approach suffers from oversmoothing artifacts, specially in regions where the 3D points are sparse.



47

Figure 3.1: (a) Interest point-based approaches give a sparse reconstruction in the form of an
unorganized cloud of points; image taken from [1]. (b) Views with wide baseline separation may not
have any interest points in common, but they often do share common curve structure. There may
not always be sufficient interest points matching across views of homogenous objects such as the car
in (c) or the sculpture in (d), but there is sufficient curve structure. (e) each moving object requires
its own set of features, but they may not be sufficient without a rich texture surface. (f) Non-rigid
structures face the same issue.
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outdoor scene). Third, methods making use of silhouette consistency or initializing from the visual

hull assume that the image is easily segmentable, requiring that the scene be artificially acquired

with a homogeneous background, and typically that the scene has a single object. Fourth, volumetric

methods require a large ammount of working memory, specially for high-resolution imagery covering

a large field of view.

3) Curve-based multiview methods typically require an accurate set of camera models and can

be divided into three categories: (i) convex hull construction, (ii) occluding contour reconstruction,

and (iii) use of differential geometry in binocular and trinocular stereo. First, when a large of views

is available around the object of interest, an initial visual hull is constructed from silhouette curves

and then evolved to optimize photometric constraints while constraining the surface projection to

the observed silhouettes. The main drawbacks of these methods is that they require controlled

acquisition, such as a homogeneous background for automatic silhouette segmentation, require an

accurately calibrated system of cameras, impose restrictions on the number and type of objects to be

reconstructed, and usually impose a that the object be within predefined 3D boundaries (bounding

volume) and that all cameras observe the same object.

Second, the occluding contours extracted from frames of a video are used to reconstruct a local

surface model given camera models for each frame. These methods work well for certain applications

but require highly controlled acquisition, requiring the image curves to be easy to segment and track

in multiple frames, and require very accurate camera models. In addition, since only the silhouettes

are used, internal surface variations which may not map to apparent contours in any view will not be

captured, e.g., as in certain surface folds of a sculpture. Our approach considers apparent contours

as well as other types of contours.

Third, a class of methods use differential geometry in correlating structure across views. Unfor-

tunately, differential geometry does not provide any constraint for matching two points in binocular

stereo, as known for tangents and curvatures, and shown here for higher order differential geometry.

Heuristics have been used when two views are close to restrict orientation difference [3, 62, 138] or

to restrict search based on a locally planar approximation [133]. Differential geometry, however, be-

comes a powerful tool in trinocular stereo and in multiview stereo in general, as first proposed in [8],

who used the constraint that corresponding pairs of points and tangents from two images uniquely

determine a point and tangent in a third view to match line segments obtained from edge linking [8].

See also [70, 136, 141]. Robert and Faugeras [131] extended Ayache’s method of transferring points

and tangents from two views to a third to include curvature: 3D curvature and normal can be re-

constructed from 2D curvatures at two views, which in turn determine the curvature in a third view.

The use of curvature results in improved precision and density in the reconstruction, and replaces

heuristics such as the ordering constraint [117]. Schmid and Zisserman [133] also derived a formula

for transferring curvatures from two views to a third when only the trifocal tensor is available (i.e.,

when the intrinsic parameters are unknown), using a projective geometry transfer of an osculating

circle as a conic.

It should be noted that more recently the differential geometry of curves in two views was
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used for reconstruction by imposing an additional constraint that the 3D curves of interest have

small torsion [94]. Specifically, the compatibility of two hypothetical pairs of point correspondences

with tangent and curvature measurements is related to the torsion of the 3D reconstructed curve. A

relaxation labeling process is then used to discover an optimal 3D reconstruction minimizing torsion.

The main drawback of this third class of methods is that they require very precise calibration,

and the binocular stereo methods have biased heuristics.

Curves have also been used in the calibration stage using the concept of epipolar tangencies:

if an epipolar line is tangent to a curve in one image, its corresponding epipolar line must also be

tangent to the corresponding curve. This constraint is used to capture the epipolar geometry (or

relative pose if the intrinsic parameters are known). All previous work in this category is restricted

to closed curves, however, which can be either images of stationary curves (reflectance curves, sharp

ridges, etc., that do not change with view) or of silhouettes.

In summary, the very popular methods based on interest points are powerful in calibration and

sparse reconstruction in numerous applications, but are limited in providing explicit 3D geometry,

are limited in the baseline between views, and are not always applicable, e.g., if there is not a

sufficient number of interest points. Pixel-based methods and curve-based methods using either

visual hull or occluding contours require highly controlled acquisition and/or very accurate camera

models. What would be desirable is a generic, generally applicable framework, e.g., a handheld

video acquiring images around the object of interest or a set of cameras simultaneously monitoring

an object, where the image curve structure can be used to calibrate and reconstruct a 3D wireframe

on which a surface can be tautly stretched like a tent on a metallic scaffold.

The use of image curve fragments as the basic structure to be correlated across images and as a

basic path to general scene reconstruction is not without challenges, however. The process of linking

edges into curve fragments is fraught with ambiguities so that there is abundant instability of curve

fragments with view variation. Also, even if it is known that two curve fragments correspond, there

remains an intra-curve correspondence ambiguity. Despite these drawbacks image curve fragments

are attractive because they have good localization, they have greater invariance than interest points

to changes in illumination, are stable over a greater range of baselines, and are much denser than

interest points. Furthermore, stationary curves such as reflectance or ridge curves provide boundary

conditions for surface reconstruction, while occluding contour variation across views directly leads

to surface reconstruction [27]. The notion that image curves contain much of the image information

is supported by a recent study [29] which found that generally subjects are able to judge 3D surface

normals of an object depicted by a line-drawing almost as accurately as for objects depicted by a

shaded image.

The clear advantage of using curve structures in images motivates an intermediate represen-

tation between isolated points and long/closed curve fragments to address the above drawbacks,

namely the use of short portions of curve segments, as fully captured by the differential geome-

try attributes of a point or a curve. This thesis develops the theoretical foundations required in

using the differential geometry for image curve structure as a complementary alternative to using
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interest points. Specifically, calibration and reconstruction using differential geometry include: (i)

How does the differential geometry of a space curve map to the differential geometry of the image

curve it projects to? (ii) How can the differential geometry of a space curve be reconstructed from

the differential geometry of two corresponding image curves, each from a different view? (iii) How

does the differential geometry of an image curve evolve under differential camera motion, whether

it arises from an occluding contour or an non-occluding contour? (iv) How does the differential

geometry of a surface map to the differential flow of image points and what does this imply in the

vicinity of or at image curves? Clear answers to these questions under a unifying framework would

undoubtedly pave the road to the use of short image curve segments in multiview problems. Some

of this work has already been done as pointed to earlier, but some has not been done, and some

have been erroneously derived, e.g., the equation relating normal contour velocity of non-occluding

contours under camera motion [120,122], which is shown here to have a missing term, and which is

extended here to handle occluding contours. This theoretical chapter has been the required founda-

tion of work already reported on the reconstruction of a 3D curve sketch from image fragments in

numerous views [47] and is the basis of calibration based on differential geometry of curves which is

not published yet [45].

A part of this work appeared in a conference [46]. In this thesis we extend these results to

account for differentiable motion, occluding and nonrigid contours, and intrinsic parameters. In

future work, we plan to develop a differential scene model by relating the differential geometry

of surfaces, differential models of camera motion, and even differential models of illumination to

differential observations in the image as organized into curve fragments and interior points of objects

bounded by these curve fragments.

This chapter is organized along the line of the four questions imposed above. Section 3.2 reviews

and establishes notation for relevant differential geometry of 2D and 3D curves, camera projection,

camera motion, and discusses an important distinction between stationary and non-stationary 3D

contours as projected onto image curves. Section 3.3 derives formulas for obtaining the differential

geometry of image curves, tangent, curvature, and curvature derivative from the differential geometry

of the space curves they arise from, i.e., tangent and normal, curvature, torsion, and curvature

derivatives. Section 3.4 derives the differential geometry of a space curve at a point from the

differential geometry at two corresponding image curve points by showing the key result that the

ratio of parametrization speeds in the two curves is an intrinsic quantity. It is also notable that

each order of differential geometry (first-order is tangent, second-order is curvature, third-order is

curvature derivative and torsion) requires only differential geometry of that order or less, e.g., a

reconstruction of curvature does not require curvature derivatives of the image curves. The key new

result in this section is the reconstruction of torsion and curvature derivative, given corresponding

differential geometry in two views.

Section 3.5 relates the differential geometry of a space curve under projection to a camera

under differential motion to the image curve differential geometry and differential motion. Results

are provided concerning the image velocities and accelerations with respect to time, for points
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on different types of curves. In order to distinguish apparent contours from stationary contours,

it is necessary to use second-order time derivative. We also study the spatial variation of the

image velocity field along curves, providing results which can be useful for exploiting neighborhood

consistency of velocity fields along curves. The main new theorem of the section corrects a missing

term in the results of [120,122] and generalizes the equation to also represent occluding contours in

addition to stationary contours such as reflectance curves.

Section 3.6 relates the differential geometry of a surface observed from a camera with differential

motion to the observation of the spatial structure of the resulting image velocity map (optical flow).

This chapter integrates the above results under the umbrella of one integrated formulation,

completes missing relationships, and corrects erroneous previous results. As a generalized framework,

this chapter is expected to act as a reference material for research relating local properties of general

curves and surfaces to those of cameras and images.

3.2 Notation and Formulation

3.2.1 Differential Geometry of Curves

A 3D space curve Γ is a mapping S 7→ Γw(S) from R to R3, where S is an arbitrary parameter, S̃

is the arc-length parameter, and the superscript w denotes the world coordinates. The local Frenet

frame of Γ in world coordinates is defined by tangent T w, normal Nw, binormal Bw; G is speed of

parametrization, curvature K, and torsion τ . Similarly, a 2D curve γ is a mapping s 7→ γ(s) from

R to R2, where s is an arbitrary parameter, s̃ is arc-length, g = ‖γ′‖ is speed of parametrization,

t = γ′/g is tangent, n = t⊥ is normal, κ is curvature defined by gκn = t′, and κ′ is curvature

derivative. By classical differential geometry [35], we have:




G = ‖Γw′‖

T w =
Γw′

G
Nw =

T w′

‖T w′‖ Bw = T w ×Nw

K =
‖T w′‖
G

K̇ =
K ′

G
τ =

−Bw′ ·Nw

G
,



Tw′

Nw′

Bw′


 = G




0 K 0

−K 0 τ

0 −τ 0







T w

Nw

Bw


 .

(3.2.1)

where throughout the paper prime “ ′” and dot “˙” denote differentiation with respect to the arbitrary

spatial parameter (S or s) and to arc-length (S̃ or s̃), respectively. The matrix equations on the right

are the Frenet equations. Note that both the curvature derivatives K̇ and κ̇ = κ′/g are intrinsic

quantities.

3.2.2 Perspective Projection

The projection of a 3D Space curve Γ into a 2D image curve γ is illustrated by Figure 3.2(a), where

the world coordinate system is centered at O with basis vectors {ew
1 ,e

w
2 ,e

w
3 }. The camera coordinate

system is centered at c = [cx, cy, cz]> with basis vectors {e1, e2, e3}. When describing coordinates
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(a)

(b)

Figure 3.2: (a) The perspective projection of a space curve. (b) The projection of a space
curve in n views.
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in the camera coordinate system we drop the w superscript, e.g., Γ versus Γw, which are related by:

Γ = R(Γw − c) = RΓw + T , (3.2.2)

where T = −Rc denotes the world coordinate origin in the camera coordinate system.

The projection of a 3D point Γ = [x, y, z]> onto the image plane at z = 1 is the point γ =

[ξ, η, 1]> related by

Γ = ργ or [x, y, z]> = [ρξ, ρη, ρ]>, (3.2.3)

where we say that γ is in normalized image coordinates (focal point is normalized to 1), and the

depth is ρ = z = e>3 Γ from the third equation. Observe that image points are treated as 3D points

with z = 1. Thus, we can write

γ =
Γ

e>3 Γ
. (3.2.4)

We note that e>3 γ(i) = 0 and e>3 Γ(i) = ρ(i), where γ(i) is the ith derivative of γ with respect to an

arbitrary parameter, for any positive integer i. Specifically,

ρ = e>3 Γ, ρ′ = Ge>3 T , ρ′′ = G′e>3 T +G2Ke>3 N. (3.2.5)

It is interesting to note that at near/far points of the curve, i.e., ρ′ = 0, e>3 T = 0.

In practice, normalized image coordinates γ = [ξ, η, 1]> are described in terms of image pixel

coordinates γim = [xim, yim, 1]> through the intrinsic parameter matrix Kim:

γim = Kimγ, Kim =



αξ σ ξo

0 αη ηo

0 0 1


 , (3.2.6)

where as usual ξo and ηo are the principal points, σ is skew, and αξ and αη are given by the focal

length divided by the width and height of a pixel in world units, respectively.

3.2.3 Discrete and Continuous Sets of Views

Two scenarios are considered. The first scenario consists of a discrete set of views where a set of n

pinhole cameras observe a scene as shown in Figure 3.2(b), with the last subscript in the symbols

indentifying the camera, e.g., γi denotes an image point in the ith camera, and e3,i denotes e3 in

the ith view. The second scenario consists of a continuous set of views from a continuously moving

camera observing a space curve which may itself be moving, Γw(S, t) = [xw(S, t), yw(S, t), zw(S, t)]>,

where S is the parameter along the curve and t is time, described in the camera coordinate system

associated with time t as Γ(S, t) = [x(S, t), y(S, t), z(S, t)]>, Figure 3.3. For simplicity, we often

omit the parameters S or t. Let the camera position over time (camera orbit) be described by the

space curve c(t) and the camera orientation by a rotation matrix R(t). For simplicity, and without

loss of generality, we take the camera coordinate system at t = 0 to be the world coordinate system,
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Figure 3.3: Multiview formulation of continuous camera motion and a possibly moving
contour.

i.e., c(0) = 0, T (0) = 0, and R(0) = I , where I is the identity matrix. Also, a stationary point can

be modeled in this notation by making Γw(t) = Γw(0) = Γ0.

A differential camera motion model using time derivatives of R(t) and T (t) can be used to relate

frames in a small time interval. Since RR> = I ,

dR
dt
R> +RdR

dt

>
= 0, (3.2.7)

which implies that Ω×
.= dR

dt R> is a skew-symmetric matrix, explicitly written as

Ω× =




0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0


 , (3.2.8)

so that dR
dt = Ω×R. Denote Ω = [Ωx, Ωy, Ωz]

> as a vector form characterization of Ω×. Similarly,

the second-derivative of R(t) is represented by only three additional numbers dΩ×
dt :

d2R
dt2

=
dΩ×
dt

R+ Ω×
dR
dt

=
dΩ×
dt

R+ Ω2
×R. (3.2.9)

Thus, a second-order Taylor approximation of the camera rotation matrix using R(0) = I is

R(t) ≈ I + Ω×t+
1
2

[
dΩ×
dt

(0) + Ω2
×(0)

]
t2. (3.2.10)

Similarly, the camera translation can be described by a differential model

V(t) .=
dT
dt

(t) = −Ω×(t)R(t)c(t)−R(t)
dc

dt
, V(0) = −dc

dt
, (3.2.11)

and
dV
dt

(t) =
d2T
dt2

(t) = −d
2R
dt2

(t)c(t)− 2
dR
dt

(t)
dc

dt
(t)−R(t)

d2c

dt2
(t), (3.2.12)
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Symbol Description Symbol Description

Γw 3D point in the world coordinate system t Image curve tangent t = γ′/g

Γ 3D point in the camera coord. syst. Γ = RΓw + T n Image curve normal n = t⊥
R Rotation matrix: world to camera coordinates κ Curvature of the image curve gκn = t′

T Translation vector: world to camera coord. T = −Rc S, S̃ Space curve arbitrary parameter & arclength, resp.
c The camera center G Space curve speed of parametrization G = ‖Γ′‖

Ω× dR
dt

= R× T , T w Space curve tangent camera & world coord., resp.

Ω Vector form of the 3 entries of Ω× N, Nw Space curve normal: camera & world coord., resp.

V V = dT
dt

= Ω×T −Rct, also V = [Vx, Vy , Vz ]> B, Bw Space curve binormal: camera & world coord., resp.

ρ Depth of image point Γ = ργ e1, e2, e3 Basis vectors of the camera coordinate system
γ 2D point in normalized image coordinates ew

1 , ew
2 , ew

3 Basis vectors of the world coordinate system
γim 2D point in pixel image coordinates ′ Diff. with resp. to S or s

s, s̃ Image curve arbitrary parameter & arclength, resp. ˙ Diff. with resp. to arclength S̃ or s̃
g Image curve speed of parametrization g = ‖γ′‖ θ The angle ](T , γ)

(u, v) Image velocities γt = [u, v, 0]>

Table 3.1:

which at t = 0 gives dV
dt (0) = −2Ω×(0)dc

dt (0)− d2c
dt (0).

The choice of whether to adopt the Taylor approximation of c(t) or T (t) as primary is entirely

dependent in which domain the higher derivatives are expective to diminish, giving

T (t) = V(0) t+
1
2
Vt(0) t2 +O(t3), c(t) = −V(0)t+

1
2

[
−d

2c

dt2
(0) + 2Ω×(0)V(0)

]
t2. (3.2.13)

3.2.4 Relating World and Camera-Centric Derivatives.

Proposition 3.2.1. The velocity of a 3D point Γ(t) in camera coordinates, Γt(t), is related to its

velocity in the world coordinates Γw
t by:

{
Γt = Ω×Γ +RΓw

t −Rct = Ω×RΓw +RΓw
t + V,

Γt = Ω×Γ−Rct = Ω×RΓ0 + V, for a fixed point, Γw = Γ0.

(3.2.14)

(3.2.15)

Proof. Differentiating Equation 3.2.2 with respect to time,

Γt = RtΓw +RΓw
t + Tt (3.2.16)

= Ω×RΓw +RΓw
t + V, (3.2.17)

= Ω×(Γ− T ) +RΓw
t + V (3.2.18)

= Ω×Γ +RΓw
t + V − Ω×T . (3.2.19)

The result follows from using T = −Rc as below

V = Tt = −Rtc−Rct = −Ω×Rc−Rct = Ω×T −Rct. (3.2.20)

¥
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3.2.5 Stationary and Non-Stationary Contours

It is important to differentiate between image contours arising from a space curve that is changing

at most with a rigid transform (stationary contours), e.g., reflectance contours and sharp ridges,

and image curves arising from deforming space curves (non-stationary contours), e.g., occluding

contours, for which the contour generators project to apparent contours. Stationary contours are

characterized by Γw
t = 0 while for occluding contours the viewing direction Γ(S, t) is tangent to the

surface M with surface normal N (Nw = R>N)

Γ>N = 0, or (Γw − c)>Nw = 0. (3.2.21)

For the image curve γ(s, t) arising from the occluding contour, Figure 3.3, the normal N to an

occluding contour [27] is N = γ×t
‖γ×t‖ .

The correlation of the parametrization S of Γ at time t to that of nearby times is captured by

Γw
t (S, t), which is orthogonal to N, but is otherwise arbitrary as a one dimensional choice. It is

common to require that Γw
t (S, t) lay on the (infinitesimal) epipolar plane, spanned by Γw(S, t), c(t),

and ct(t), referred to as the epipolar parametrization [27], requiring

Γw
t × (Γw − c) = 0, or Γw

t = λ(Γw − c) for some λ. (3.2.22)

3.3 Projecting Differential Geometry Onto a Single View

This section relates the intrinsic differential-geometric attributes of the space curve and those of its

perspective image curves. Specifically, the derivatives Γ′, Γ′′, and Γ′′′ are first expressed in terms of

the differential geometry of Γ, namely {T ,N,B,K, K̇, τ}, and second, they are expressed in terms

of the differential geometry of γ, namely {t,n, κ, κ̇} using Γ = ργ. Note that K̇ and κ̇ are both

intrinsic quantities. In equating these two expressions we relate {T ,N,B,K, K̇, τ} to {t,n, κ, κ̇}.
Our purpose is to eliminate the dependence on the parametrizations (g,G), and depth ρ, i.e., final

expressions do not contain these unknowns nor their derivatives (g, g′, g′′), (G,G′, G′′), or unknown

depth and its derivatives (ρ, ρ′, ρ′′, ρ′′′).

Proposition 3.3.1. {T , N, B, K, K̇, τ, G, G′, G′′} are related to {γ, t, n, κ, κ̇, g, g′, g′′, ρ, ρ′, ρ′′, ρ′′′}
by





GT = ρ′γ + ρgt

G′T +G2KN = ρ′′γ + (2ρ′g + ρg′)t + ρg2κn

(G′′ −G3K2)T + (3GG′K +G3K̇)N +G3KτB =

ρ′′′γ + [3ρ′′g + 3ρ′g′ + ρ(g′′ − g3κ2)]t + [3ρ′g2κ+ ρ(3gg′κ+ g3κ̇)]n.

(3.3.1)

(3.3.2)

(3.3.3)

Proof. First, writing Γ′, Γ′′, and Γ′′′ in the Frenet frame of Γ as





Γ′ = GT

Γ′′ = G′T +G2KN

Γ′′′ = (G′′ −G3K2)T + (3GG′K +G2K ′)N +G3KτB.

(3.3.4)

(3.3.5)

(3.3.6)
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Note that when expressed with respect to the arc-length of Γ, i.e., G ≡ 1, simple expressions result:





Γ̇ = T

Γ̈ = KN
...
Γ = −K2T + K̇N +KτB.

(3.3.7)

(3.3.8)

(3.3.9)

Second, differentiating Γ = ργ gives:





Γ′ = ρ′γ + ργ′

Γ′′ = ρ′′γ + 2ρ′γ′ + ργ′′

Γ′′′ = ρ′′′γ + 3ρ′′γ′ + 3ρ′γ′′ + ργ′′′.

(3.3.10)

(3.3.11)

(3.3.12)

This can be rewritten using expressions for the derivatives of γ, which are





γ′ = gt

γ′′ = g′t + g2κn

γ′′′ = (g′′ − g3κ2)t + (3gg′κ+ g2κ′)n.

(3.3.13)

(3.3.14)

(3.3.15)

Thus, Γ′, Γ′′, and Γ′′′ can be written in terms of γ, t, n, κ, κ̇, g, g′, g′′, ρ, ρ′, ρ′′, ρ′′′ as





Γ′ = ρ′γ + ρgt

Γ′′ = ρ′′γ + (2ρ′g + ρg′)t + ρg2κn

Γ′′′ = ρ′′′γ + [3ρ′′g + 3ρ′g′ + ρ(g′′ − g3κ2)]t

+ [3ρ′g2κ+ ρ(3gg′κ+ g3κ̇)]n.

(3.3.16)

(3.3.17)

(3.3.18)

Equating (3.3.4-3.3.6) and (3.3.16-3.3.18) proves the proposition. ¥

Corollary 3.3.2. Using the arc-length S̃ of the space curve as the common parameter, i.e., when

G ≡ 1, we have:





T = ρ′γ + ρgt

KN = ρ′′γ + (2ρ′g + ρg′)t + ρg2κn

−K2T + K̇N +KτB = ρ′′′γ + [3ρ′′g + 3ρ′g′ + ρ(g′′ − g3κ2)]t

+ [3ρ′g2κ+ ρ(3gg′κ+ g3κ̇)]n.

(3.3.19)

(3.3.20)

(3.3.21)

First-Order Differential Geometry. We are now in a position to derive the first-order differential

attributes of the image curve (g, t) from that of the space curve (G, T ). Note from (3.3.1) or (3.3.19)

that T lies on the plane spanned by t and γ, i.e., T is a linear combination of these vectors. An

exact relationship is expressed bellow.

Theorem 1. Given the tangent T at Γ when T is not aligned with γ, then the corresponding tangent

t and normal n at γ are determined by:

t =
T− (e>3 T)γ
‖T− (e>3 T)γ‖ , n = t⊥ .= t× e3. (3.3.22)
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Proof. First recall that ρ′ = e>3 Γ′ = Ge>3 T . Using this in Equation 3.3.1 gives:

t =
1
ρg

[GT − ρ′γ] =
G

ρg
[T − e>3 Tγ] (3.3.23)

and the result follows by normalizing. The formula for the normal comes from the fact that it lies

in the image plane, therefore being orthogonal to both t and e3. ¥

Observe that the depth scale factor ρ is not needed to find t from T . Moreover, when γ and T

are aligned for a point on γ, Equation (3.3.23) still holds, but implies that g = 0 and t is undefined,

i.e., that the image curve will have stationary points and possibly corners or cusps. Stationary

points are in principle not detectable from the trace of γ alone, but by the assumption of general

position these do not concern us.

A crucial quantity in relating differential geometry along the space curve to that of the projected

image curve is the ratio of speeds of parametrizations g
G (s). The following theorem derives the key

result that this quantity is intrinsic in that it does not depend on either g(s) or G(s) at each arbitrary

s, thus allowing a relationship between the differential geometry of the space and image curves.

Theorem 3.3.3. The ratio of speeds of the projected 2D curve g and of the 3D curve G at corre-

sponding points is an intrinsic quantity:

g

G
=
‖T− (e>3 T)γ‖

e>3 Γ
or g =

‖GT − ρ′γ‖
ρ

. (3.3.24)

i.e., it does not depend on the parametrization of Γ or of γ.

Proof. Follows from a dot product of Equation 3.3.23 with t and dividing by ρ = e>3 Γ. ¥

Second-Order Differential Geometry. The curvature of an image curve can be derived from

the curvature of the space curve, as shown by the next theorem.

Theorem 2. The curvature κ of a projected image curve is given by:

κ =
[
N− (e>3 N)γ

ρg2
· n

]
K, when G ≡ 1, or κ = G

[
N>(γ × t)

ρg2 n>(γ × t)

]
K, (3.3.25)

where g is given by Equation 3.3.24 and ρ = e>3 Γ. The tangential acceleration of a projected curve

with respect to the arc length of the space curve is given by:

dg

dS̃
=

[N− (e>3 N)γ]>tK

ρ
− 2g

e>3 T

ρ
, or

dg

dS̃
=
KN>(γ × n)
ρt>(γ × n)

− 2g
e>3 T

ρ
. (3.3.26)

Proof. Using Equation 3.2.5 in Equation 3.3.20 leads to

GKN = (G′e>3 T +G2Ke>3 N)γ + 2(G′e>3 T )gt + ρg′t + ρg2κn. (3.3.27)

First, in the case of G ≡ 1 curvature κ can be isolated by taking the dot product of the last equation

with n which gives the curvature projection formula (3.3.25). Alternatively, taking the dot product

with γ × t gives the alternative formula. Second, the term g′ can be isolated by taking the dot

product with t or with γ × n. ¥
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Note that formulas for the projection of 3D tangent and curvatures onto 2D tangent and geodesic

curvature appear in [28] and [27, pp. 73–75], but an actual image curvature was not determined

there. That the curvature of the space curve is related to the curvature of the projected curve was

derived in previous work [94, 131], but our proof is much simpler and more direct. Moreover, our

proof methodology generalizes to relating higher order derivatives such as curvature derivative and

torsion, as shown below.

Theorem 3. The curvature derivative of a projected image curve γ is derived from the local third-

order differential geometry of the space curve as follows:

κ̇ =
[K̇N +KτB]>(γ × t)

ρg3n>(γ × t)
− 3κ

(
e>3 T

ρg
+
g′

g2

)
. (3.3.28)

Proof. Taking the scalar product of Equation 3.3.21 with γ × t, and using T>(γ × t) = 0,

[K̇N +KτB]>(γ × t) = [3ρ′g2κ+ ρ(3gg′κ+ g3κ̇)]n>(γ × t), (3.3.29)

which using ρ′ = e>3 T gives

3e>3 T g2κ+ ρ(3gg′κ+ g3κ̇) =
[K̇N +KτB]>(γ × t)

n>(γ × t)
. (3.3.30)

Isolating κ̇ gives the desired result. Since both g and g′ are available from Equations 3.3.24 and 3.3.26,

the theorem follows. ¥

3.3.1 Intrinsic Parameters and Differential Geometry

This section derives the relationship between the intrinsic differential geometry {t, n, κ, κ̇} of the

curve in normalized image coordinates to those in image pixel coordinates, {tim, nim, κim, κ̇im}.
Using the intrinsic parameter matrix Kim relating γim = Kimγ, by the linear Equation 3.2.6.

Theorem 4. The Intrinsic quantities {t, n, κ, κ̇} and {tim, nim, κim, κ̇im} under linear transfor-

mation γim = Kimγ are related by




gim = ‖Kimt‖, tim =
Kimt

‖Kimt‖ , nim = tim × e3

g′im =
κt>K>imKimn

gim
, κim =

n>imKimκn

g2
im

,

κ̇im =
1
g3

n>imKim(−κ2t + κ̇n)− 3g′imκim

g2
im

.

(3.3.31)

(3.3.32)

(3.3.33)

where the speed gim is relative to unit speed at γ.

Proof. Differentiating (3.2.6) with respect to the arclength s̃ of γ, and using Equation 3.3.16, γ′im =

Kimγ̇ gives

gimtim = Kimt. (3.3.34)
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Differentiating (3.2.6) a second time with respect to s̃, and using Equation 3.3.14

g′imtim + g2
imκimnim = Kimκn. (3.3.35)

Taking the dot product with tim gives the formula for g′im, and taking the dot product with nim gives

the formula for κim. Differentiating (3.2.6) a third time with respect to s̃, and using Equation 3.3.15,

we have:

(g′′im − g3
imκ

2
im)tim + (3gimg

′
imκim + g3

imκ̇im)nim = Kim(−κ2t + κ̇n). (3.3.36)

Taking the dot product with nim:

3gimg
′
imκim + g3

imκ̇im = n>imKim(−κ2t + κ̇n), (3.3.37)

and isolating κim, the last result follows. ¥

The above theorem can also be used in its inverse form from γim to γ by substituting Kim for

K−1
im , and trivially exchanging the sub-indices. Moreover, the theorem is generally valid for relating

differential geometry under any linear transformation in place of Kim.

3.4 Reconstructing Differential Geometry from Multiple Views

In the previous section we derived the differential geometry of a projected curve from a space curve.

In this section, we derive the differential geometry of a space curve Γ from that of its projected image

curves in multiple views, namely γi for camera i, i = 1, . . . , N . In order to simplify the equations,

in this section all vectors are written in the common world coordinate basis, including γi. Denote

Γi := Γw − ci, namely Γi represents the vector from the ith camera center to the 3D point Γw in

the world coordinate system.

The reconstruction of a point on the space curve Γ from two corresponding image curve points

γ1 and γ2 can be obtained by equating the two expressions for Γw, given by Equation 3.2.3
{

Γw − c1 = ρ1γ1

Γw − c2 = ρ2γ2

=⇒ ρ1γ1 − ρ2γ2 = c2 − c1. (3.4.1)

Taking the dot product with γ1, γ2, and γ1 × γ2 gives





ρ1γ1 · γ1 − ρ2γ1 · γ2 = (c2 − c1) · γ1

ρ1γ1 · γ2 − ρ2γ2 · γ2 = (c2 − c1) · γ2

0 = (c2 − c1) · (γ1 × γ2)

(3.4.2)

which gives 



ρ1 =
(c2 − c1) · γ1 (γ2 · γ2)− (c2 − c1) · γ2 (γ1 · γ2)

(γ1 · γ1)(γ2 · γ2)− (γ1 · γ2)2

ρ2 =
(c2 − c1) · γ1 (γ1 · γ2)− (c2 − c1) · γ2 (γ1 · γ1)

(γ1 · γ1)(γ2 · γ2)− (γ1 · γ2)2
,

(3.4.3)
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provided that (c2 − c1) · (γ1 × γ2) = 0. This is precisely the well-known fact that this system of

three equations in two unknowns ρ1 and ρ2 can only be solved if the lines c1γ1 and c2γ2 intersect.

The crucial factor in relating the differential geometry of image curves in distinct views is the

relationship between parametrization in each view:

Proposition 3.4.1. The ratio of parametrization speeds in two views of a space curve at corre-

sponding points is given by:
g1
g2

=
ρ2

ρ1

‖T − (e>3,1T )γ1‖
‖T − (e>3,2T )γ2‖

. (3.4.4)

Proof. Follows by dividing expressions for g1
G and g2

G from Equation 3.3.24. ¥

Next, note from Equation 3.3.1 that the unit vector T can be written as

T =
ρ′

G
γ + ρ

g

G
t. (3.4.5)

Since T is a unit vector, it can be written as

T = cos θ
γ

‖γ‖ + sin θ t, where cos θ =
ρ′

G
‖γ‖, sin θ = ρ

g

G
. (3.4.6)

Note that ρ > 0 implies that sin θ ≥ 0 or θ ∈ [0, π). Thus the reconstruction of T from t requires the

discovery of the additional parameter θ which can be provided from tangents at two corresponding

points:

Theorem 5. Two tangent vectors at a corresponding pair of points, namely t1 at γ1 and t2 at γ2,

reconstruct the corresponding space tangent T at Γ

T = cos θ1
γ1

‖γ1‖
+ sin θ1t1 = cos θ2

γ2

‖γ2‖
+ sin θ2t2, (3.4.7)

and

ρ1g1 = sin θ1G, ρ′1‖γ1‖ = cos θ1G,
ρ′1
ρ1g1

= − t1 · (γ2 × t2)
γ1 · (γ2 × t2)

ρ2g2 = sin θ2G, ρ′2‖γ2‖ = cos θ2G,
ρ′2
ρ2g2

= − t2 · (γ1 × t1)
γ2 · (γ1 × t1)

,

(3.4.8)

where

tan θ1 = − 1
‖γ1‖

γ1 · (γ2 × t2)
t1 · (γ2 × t2)

, θ1 ∈ [0, π)

tan θ2 = − 1
‖γ2‖

γ2 · (γ1 × t1)
t2 · (γ1 × t1)

, θ2 ∈ [0, π).
(3.4.9)

Proof. Equating the two expressions for T from Equation 3.4.6, one for each view, gives Equa-

tion 3.4.7. Solving for θ1 by taking the dot product with γ2 × t2 gives

cos θ1
γ1

‖γ1‖
· (γ2 × t2) + sin θ1 t1 · (γ2 × t2) = 0, (3.4.10)

which leads to Equation 3.4.9 and similarly for θ2. Equation 3.4.4 follows from Equation 3.4.6. ¥
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Figure 3.4: 3D Tangent reconstruction from two views as the intersection of two planes.

Remark: Since T is orthogonal to both γ1 × t1, and γ2 × t2 we have

εT =
(t1 × γ1)× (t2 × γ2)
‖(t1 × γ1)× (t2 × γ2)‖

ε = ±1, (3.4.11)

where ε is determined from



ε [T − (T · e3,1)γ1] · t1 > 0

ε [T − (T · e3,2)γ2] · t2 > 0.
(3.4.12)

Remark: This theorem implies that any two tangents at corresponding points can be consistent

with at least one space tangent. Furthermore, the discovery of T does not require the a priori

solution of ρ1 or ρ2.

Theorem 6. The normal vector N and curvature K of a point on a space curve Γ with point-

tangent-curvature at projections in two views (γ1, t1, κ1) and (γ2, t2, κ2) are given by solving the

following system in the vector NK:




G(γ1 × t1)>NK = n>1 (γ1 × t1)ρ1g
2
1 κ1

G(γ2 × t2)>NK = n>2 (γ2 × t2)ρ2g
2
2 κ2

T>NK = 0,

(3.4.13)

where T is given by Equation 3.4.5, ρ1 and ρ2 by Equation 3.4.3, and g1 and g2 by Equation 3.3.24.

Proof. Taking the dot product of (3.3.27) with γ × t, for each view, we arrive at the first two

equations. The third equation imposes the solution NK to be normal to T .

¥

The next theorem shows how to reconstruct torsion and curvature derivative from a third order

representation of two image curves.
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Theorem 7. The torsion and curvature derivative at a point of a space curve can be obtained from

up to third order differential geometry {τ, κ, κ̇} at a pair of corresponding points by solving for V in

the following system:





(γ1 × t1)>V = [3g2
1κ1e

>
3,1T + ρ1(3g1g′1κ1 + g3

1κ̇1)]n>1 (γ1 × t1)

(γ2 × t2)>V = [3g2
2κ2e

>
3,2T + ρ2(3g2g′2κ2 + g3

2κ̇2)]n>2 (γ2 × t2)

T>V = 0,

(3.4.14)

with T , N, B, K, g1, g2, g′1, g
′
2, ρ1, and ρ2 determined from previous derivations, and by solving

for the torsion τ and curvature derivative K̇ from V = K̇N +KτB, i.e.,



τ =

V>B

K

K̇ = V>N.

(3.4.15)

(3.4.16)

Proof. Apply Equation (3.3.29) for two views, and let V := K̇N+KτB to get the first two equations

of (3.4.14). The last equations constrains V to be orthogonal to T . ¥

3.5 Projecting Differential Geometry Under Differential Mo-

tion

The goal of this section is to relate differential observations in a series of images from a continuous

video sequence to the differential geometry of the space curve. As this relationship is governed by

the differential motion of the camera and its intrinsic parameters, we also aim to recover calibration,

scene geometry, and camera motion/pose from these observations. We explore how differential scene

properties are projected onto differential image properties for points and curves, and expect future

work to apply this to surfaces.

Differential models of camera motion observing a rigid scene were studied in [4,12,18,19,36,76,

83,100,104,106,147,151,152,154,155]. These papers studied how the first and second-order motion

of the image of fixed points relate to a differential camera motion model. They also envisioned

recovering local 3D surface properties from the local behavior of the velocities of projected surface

points in an image neighborhood. Differential models for nonrigid curves observed in a monocular

video sequence were studied in [48, 120, 122], where it was established that multiple simultaneous

video sequences would be needed. This led to a practical work in the reconstruction of nonrigid

curves from multiview video [21, 22], exploiting temporal consistency within each video frame, as

well as consistency across the two video sequences. Differential models of occluding contours were

studied mainly in [24, 27], relating the deformation of apparent contours under differential camera

motion to scene properties such as occluding contours, and a differential-geometric model of the

underlying 3D surface.
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3.5.1 Differential Relations for a Point

Theorem 3.5.1. (Moving 3D point) Let Γw(t) be a moving point in space, projected onto a moving

camera as γ(t) with depth ρ(t). Let the differential velocity and rotation of the camera be V and Ω,

respectively, and let Vt and Ωt represent their derivative with respect to time t, respectively. Then,

the depth gradient and second derivative at t = 0 are



ρt = ρe>3 (Ω×γ +

1
ρ
Γw

t +
1
ρ
V)

ρtt = ρ e>3 (Ω2
× + [Ωt]×)γ + 2e>3 Ω×Γw

t + e>3 Γw
tt + e>3 Vt,

at t = 0
(3.5.1)

(3.5.2)

and the velocity and acceleration of the projected point at t = 0 are given by




γt =
(
Ω×γ − (e>3 Ω×γ)γ

)
+

1
ρ
(Γw

t − e>3 Γw
t γ) +

1
ρ
(V − e>3 Vγ)

γtt = (Ω2
× + [Ωt]×)γ +

2
ρ
Ω×Γw

t +
1
ρ
Γw

tt +
1
ρ
Vt − 2ρt

ρ
γt −

ρtt

ρ
γ,

at t = 0
(3.5.3)

(3.5.4)

which can be simplified as

γtt = (Ω2
× + [Ωt]×)γ +

2
ρ
Ω×Γw

t +
1
ρ
Γw

tt +
1
ρ
Vt

− 2e>3

(
Ω×γ +

V
ρ

+
Γw

t

ρ

)(
V
ρ
− e>3 V

ρ
γ + Ω×γ − (e>3 Ω×γ)γ +

1
ρ
Γw

t −
e>3 Γw

t

ρ
γ

)

− e>3

(
(Ω2
× + [Ωt]×)γ +

Vt

ρ
+ 2Ω×

Γw
t

ρ
+

Γw
tt

ρ

)
γ. (3.5.5)

Proof. The image velocity γt is dependent on the velocity Γt of the 3D structure in camera co-

ordinates, which arises from both the motion of Γw and from the moving camera. Differentiating

Γ = RΓw + T , we get

Γt = RtΓw +RΓw
t + Tt = RΩ×Γw +RΓw

t + V. (3.5.6)

Differentiating Γ = ργ we get

Γt = ργt + ρtγ. (3.5.7)

Equating these two expressions leads to

ργt + ρtγ = RΩ×Γw +RΓw
t + V for arbitrary t. (3.5.8)

At t = 0 we have Γw = Γ = ργ, leading to

ργt + ρtγ = ρΩ×γ + Γw
t + V for t = 0. (3.5.9)

The depth gradient ρt is then isolated by taking the dot product of both sides of Equation 3.5.9

with e3, observing that e>3 γ = 1 and e>3 γt = 0, resulting in Equation 3.5.1. The expression for ρt

is then substituted into Equation 3.5.9 from which γt can be isolated in the form of Equation 3.5.3.

The second order expressions γtt and ρtt require another time derivative of Equation 3.5.8:

ργtt + 2ρtγt + ρttγ = (RΩ2
× +R[Ωt]×)Γw +RΩ×Γw

t +RtΓw
t +RΓw

tt + Vt. (3.5.10)
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Setting t = 0 we have

ργtt + 2ρtγt + ρttγ = (Ω2
× + [Ωt]×)ργ + 2Ω×Γw

t + Γw
tt + Vt. (3.5.11)

Now the expression for ρtt in the theorem can be obtained by dotting with e3, giving Equa-

tion 3.5.2. Isolating γtt we have

γtt = (Ω2
× + [Ωt]×)γ +

1
ρ
(2Ω×Γw

t + Γw
tt + Vt − 2ρtγt − ρttγ). (3.5.12)

Substituting Equations 3.5.2 and 3.5.3 into the above, we obtain the final expression for γtt. ¥

The Special Case of Fixed Points. The question of how the image of a fixed point moves as

the camera moves was studied by Longuet-Higgins and Prazdny [100] and later by Waxman and

Ullman [155], giving the velocity γt for a fixed point. This calculation also leads to the well-known

epipolar constraint, the notion of Essential matrix [99], and the continuous epipolar constraint [104].

Theorem 3.5.1 in the special case of a fixed point gives interesting geometric insight into these

classical results. Specifically, setting Γw
t = 0 in first-order computations of Equations 3.5.1 and 3.5.3

results in 



ρt

ρ
= e>3 (Ω×γ +

V
ρ

)

γt = Ω×γ − (e>3 Ω×γ)γ +
V
ρ
− Vz

ρ
γ.

at t = 0
(3.5.13)

(3.5.14)

Essential constraint. To derive the differential epipolar constraint, eliminate ρ from Equa-

tion 3.5.14 by first writing out the equation in terms of ξ and η where γt = [ξ, η, 0]> and using

e>3 Ω×γ = −Ωyξ + Ωxη





u− Ωyξ
2 + Ωxξη + Ωzη − Ωy =

1
ρ
(Vx −Vzξ)

v + Ωxη
2 − Ωyξη − Ωzξ + Ωx =

1
ρ
(Vy −Vzη) (3.5.15)

and then eliminating ρ, gives

(
u− Ωyξ

2 + Ωxξη + Ωzη − Ωy

)
(Vy − ηVz) =

(
v + Ωxη

2 − Ωyξη − Ωzξ + Ωx

)
(Vx − ξVz)

which is the epipolar constraint for differential motion [104, 161]. A more direct way of deriving

the epipolar constraint equation is to eliminate ρ in Equation 3.5.9 with Γw
t = 0 by taking the

dot-product with the vector V × γ = V×γ, where V× is a skew-symmetric arrangement of V, and

using Ω>× = −Ω× gives

ργ>t V×γ = −ργ>Ω×V×γ

resulting in the differential epipolar constraint

γ>t V×γ + γ>Ω×V×γ = 0. (3.5.16)
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In comparison, the widely-known essential constraint for relating two views is given by:

γ>2 T×Rγ1 = 0, (3.5.17)

where the matrix T×R, the essential matrix, combines the effects of translation and rotation to

relate two points γ1 and γ2. In the differential case the two matrices V× and Ω×V× play a similar

role to T×R in the discrete motion case to relate a point and its velocity.

Remark 3.5.1. Observe from Equation 3.5.14 that γt can also be written as the sum of two

components, one depending on V, and the other on Ω, i.e.,

γt =
1
ρ
A(γ)V +B(γ)Ω, where A(γ) =




1 0 −ξ
0 1 −η
0 0 0


 and B(γ) =




−ξη 1 + ξ2 −η
−(1 + η) ξη ξ

0 0 0


 .

(3.5.18)

That γt depends linearly on V and Ω (since A and B are only dependent on the position γ) is the

basis of subspace methods in structure from motion [72], which observe that

Q =




0 1 0

−1 0 0

ξ −η 0


 , QAV =




0 1 0

−1 0 0

ξ −η 0


V = V×γ, QBΩ =




−ξη 1 + ξ2 −η
−(1 + η) ξη ξ

0 0 0


 Ω = γ×(γ×Ω),

(3.5.19)

to define transformed velocities q

q = Qγt =
1
ρ
V × γ + γ × (γ × Ω). (3.5.20)

This equation provides a linear constraint in V and Ω, so that observations of image velocities

q1, q2, . . . , qN at points γ1,γ2, . . . ,γN provides N constraints of the form

qi =
1
ρi

V × γi + γi × (γi × Ω), i = 1, 2, . . . , N. (3.5.21)

3.5.2 Differential Relations for a Curve

Theorem 3.5.2. (Deforming 3D curve) Consider a deforming 3D curve Γ(s, t) projecting to a

family of 2D curves γ(s, t) with depth ρ(s, t), arising from camera motion with differential velocities

of translation and rotation V and Ω, respectively, and let Vt and Ωt be their respective derivatives

with time. Then, the image velocity γt is determined from
{
V, Ω, V

ρ ,
Γw

t

ρ , t
}
,

γt = αt + βn, where





α = −Ω · γ × (γ × n)−
(

V
ρ
− Ω×

T
ρ

+RΓw
t

ρ

)
· γ × n,

β = Ω · γ × (γ × t) +
(

V
ρ
− Ω×

T
ρ

+RΓw
t

ρ

)
· γ × t,

(3.5.22)

(3.5.23)

Proof. From Equation 3.2.14 and using −Rct = V − Ω×T from Equation 3.2.11,

Γt = Ω×Γ + V − Ω×T +RΓw
t . (3.5.24)
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Using Γ = ργ and Γt = ρtγ + ργt,

ρtγ + ργt = ρΩ×γ + V − Ω×T +RΓw
t . (3.5.25)

Taking the dot product with γ × n and γ × t



ργt · (γ × n) = ρ(Ω×γ) · (γ × n) + (V − Ω×T ) · (γ × n) +RΓw

t · (γ × n),

ργt · (γ × t) = ρ(Ω×γ) · (γ × t) + (V − Ω×T ) · (γ × t) +RΓw
t · (γ × t).

(3.5.26)

Now,




γt · (γ × n) = (αt + βn) · (γ × n) = αt · (γ × n) = αn× t · γ = −αe>3 γ = −α
γt · (γ × t) = (αt + βn) · (γ × t) = βn · (γ × t) = βt× (n · γ) = βe>3 γ = β.

(3.5.27)

So that we can write




α = −(Ω×γ) · (γ × n)−
(

V
ρ
− Ω×

T
ρ

+RΓw
t

ρ

)
· (γ × n)

β = (Ω×γ) · (γ × t) +
(

V
ρ
− Ω×

T
ρ

+RΓw
t

ρ

)
· (γ × t).

(3.5.28)

Since we can switch the cross and dot products in a triple scalar product, Ω×γ·(γ×n) = Ω·γ×(γ×n)

and Ω× γ · (γ × t) = Ω · γ × (γ × t), giving the final result.

¥

Corollary 3.5.3. The spatial variation of the velocity vector field γt along the curve and in time

can be written as

γst = (−V + Vzγ)
ρs

ρ2
− Vz

ρ
γs + Ω×γs − (e>3 Ω×γs)γ − (e>3 Ω×γ)γs

1
ρ2

(Γw
st − e>3 Γw

stγ − e>3 Γw
t γs)−

1
ρ2

(Γw
t − e>3 Γw

t γ)ρs (3.5.29)

and the time acceleration γtt is defined by




t>γtt = t>(Ω2
× + [Ωt]×)γ +

2
ρ
t>Ω×Γw

t +
1
ρ
t>Γw

tt +
1
ρ
t>Vt

− 2e>3

(
Ω×γ +

V
ρ

+
Γw

t

ρ

)
α− e>3

(
(Ω2
× + [Ωt]×)γ +

Vt

ρ
+ 2Ω×

Γw
t

ρ
+

Γw
tt

ρ

)
t>γ,

n>γtt = n>(Ω2
× + [Ωt]×)γ +

2
ρ
n>Ω×Γw

t +
1
ρ
n>Γw

tt +
1
ρ
n>Vt

− 2e>3

(
Ω×γ +

V
ρ

+
Γw

t

ρ

)
β − e>3

(
(Ω2
× + [Ωt]×)γ +

Vt

ρ
+ 2Ω×

Γw
t

ρ
+

Γw
tt

ρ

)
n>γ,

(3.5.30)

Proof. The γst expression in (3.5.29) is derived by differentiating γt with respect to s in Equa-

tion 3.5.3, but notice that γt in the moving case decomposes into the same terms as for the fixed

case, Equation 3.5.6, plus terms dependent on Γw
t given by 1

ρ

(
Γw

t − e>3 Γw
t γ

)
. Differentiating with

respect to s then gives a term equal to γst for the fixed case plus terms dependent on Γw
t and its
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spatial derivative, the latter being obtained by differentiating the above expression with respect to

s.

The expressions of γtt in the Frenet frame were obtained by taking the dot product of (3.5.4)

with t and n, noting that γt · t = α and γt · n = β. We then substitute the expressions for ρt and

ρtt in. ¥

Special Case: Rigid Stationary Curve.

Corollary 3.5.4. (Rigid stationary 3D curve) Let Γ(s̃) be a 3D curve projecting to a family of 2D

curves γ(s̃, t) with depth ρ(s̃, t), arising from camera motion with differential velocity of translation

and rotation V and Ω, respectively. Let t denote the unit tangent to the image curve. Then

γ s̃t =
−ρs̃

ρ

(
V
ρ
− Vz

ρ
γ

)
− Vz

ρ
t + Ω×t− (e>3 Ω×t)γ − (e>3 Ω×γ)t. (3.5.31)

Proof. Follows by setting Γw
t = 0 in Equation 3.5.29 and using the spatial parameter as the arclength

of the image curve. ¥

Corollary 3.5.5. The tangential and normal velocities of a rigid curve induced by a moving camera

are derived from {γ, t, n, Tρ , Ω, V
ρ } for any t as





α = −Ω · γ × (γ × n)−
(

V
ρ
− Ω×

T
ρ

)
· (γ × n)

β = Ω · γ × (γ × t) +
(

V
ρ
− Ω×

T
ρ

)
· (γ × t)

for any t,
(3.5.32)

(3.5.33)

or 



α = −Ω · γ × (γ × n)− γ × n · V
ρ

β = Ω · γ × (γ × t) + γ × t · V
ρ

for t = 0.
(3.5.34)

(3.5.35)

Corollary 3.5.6. The infinitesimal Essential constraint in the Frenet frame of the image of a rigid

curve is given by:

(γ × t) ·V [α+ Ω · γ × (γ × n)] + (γ × n) ·V [β − Ω · γ × (γ × t)] = 0 (3.5.36)

Proof. Eliminate ρ from (3.5.35) and (3.5.34). ¥

Corollary 3.5.7. (From [120, 122]) The tangential velocity α can be fully determined from the

normal velocity β and γ, t, n, Ω, and V
ρ without the explicit knowledge of ρ, as

α = − [β − Ω · γ × (γ × t)]
V · (γ × n)
V · (γ × t)

− Ω · γ × (γ × n) (3.5.37)

Proof. Follows by eliminating ρ from Equations 3.5.34 and 3.5.35. ¥

Special Case: Occluding Contours. A remarkable observation is derived below that the first-

order deformation of an apparent contour under epipolar parametrization does not depend on the

3D surface geometry, since the curvature-dependent terms cancel out for an occluding contour.
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Theorem 3.5.8. (Occluding contours) Let Γ(s, t) be the contour generator for apparent contours

γ(s, t). Then the image velocity γt at t = 0 can be determined from γ by ρ and the infinitesimal

motion parameters using Equation 3.5.14, i.e., the same one used for a stationary contour.

Proof. Recall from Equation 3.2.22 that the velocity of an occluding contour under epipolar parametriza-

tion statisfies Γw
t = λ(Γw − c) for some λ, so that at t = 0

Γw
t = λργ =⇒ e>3 Γw

t = λρ, (3.5.38)

so that Γw
t = (e>3 Γw

t )γ and the terms Γw
t − (e>3 Γw

t )γ = 0 so that all appearances of Γw
t cancel-out

altogether in Equation 3.5.3, giving exactly the same formula as for fixed contours, Equation 3.5.14,

when Γw
t = 0. ¥

We now show exactly how the velocity of the 3D occluding contour, Γw
t , depends on the curvature

of the occluding surface.

Theorem 3.5.9. The velocity of a 3D occluding contour under epipolar parametrization and relative

to a fixed world coordinate system (camera at t = 0) is given by:




Γw
t = −c>t Nw

Kt
· Γw − c

‖Γw − c‖2 , for arbitrary t.

Γw
t = −c>t N

Kt
· γ

ρ‖γ‖2 , for t = 0,

(3.5.39)

(3.5.40)

or, in terms of T and R, and image measurements:

Γw
t =

1
Kt

(
V>

ρ

γ × t

‖γ × t‖
)

γ

‖γ‖2 , for t = 0, (3.5.41)

where Kt is the normal curvature of the occluding surface along the visual direction.

Proof. Differentiating the occluding contour condition in the second form of Equation 3.2.21 gives

(Γw
t − ct)>Nw + (Γw − c)>Nw

t = 0. (3.5.42)

The Weingarten equations of differential geometry relate sectional curvature in a direction to the

derivative of the normal in that direction, Nw
t = −KtΓw

t , so that using Γw>
t Nw = 0

(Γw
t − ct)>Nw −Kt(Γw − c)>Γw

t = 0. (3.5.43)

−c>t Nw −Kt(Γw − c)>Γw
t = 0 (3.5.44)

(Γw − c)>Γw
t = −c>t Nw

Kt
. (3.5.45)

Now, for the epipolar parametrization, Γw
t = λ(Γw − c), so that λ can be obtained leading to

Γw
t = −c>t Nw

Kt

Γw − c

‖Γw − c‖2 , for arbitrary t. (3.5.46)
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At t = 0, we have Nw = N and Γw − c = Γ = ργ (but note that Γt(0) 6= Γw
t (0)), hence:

Γw
t = −c>t N

Kt

γ

ρ‖γ‖2 , for t = 0. (3.5.47)

Using V = −ct from Equation 3.2.11, and N = γ×t
‖γ×t‖ from Section 3.2.5 instead of N gives the

alternative form of this equation. ¥

We now present a theorem relating observed quantities to camera motion. A form of this theorem

appears in [120, 122], Equation L1, but this is limited to rigid motion. Furthermore, these results

are incorrect in that they missed a term corresponding to the last term in Equation 3.5.48,

(Ω×V)(γ × t)[β − Ω · γ × (γ × t)],

perhaps because they differentiated the normal flow equation for t = 0. The theorem below corrects

that and also generalizes the results to include occluding contours. The fact that Equation 3.5.48 in

the theorem is also valid for occluding contours is a new result, to the best of our knowledge. The

term Γw
t is zero for fixed contours, and is dependent on surface curvature in the case of occluding

contours. The equation is not valid for arbitrary non-rigid contours because, in order to derive the

normal flow equation, we used Γw
t · (γ × t) = 0, which is only true for occluding and fixed contours.

Theorem 3.5.10. (A corrected and generalized form of the L1 equation of [120, 122]) Given a 3D

occluding contour or fixed curve, and the family of projected curves γ(t) observed in a monocular

sequence of images from a moving camera, and given t, κ,n, β, βt measurements at one point, then

the first and second order camera motion, Ω, V, Ωt, Vt satisfy a polynomial equation:

Vz [β − Ω · γ × (γ × t)]2 + V · γ × t (βt − Ωt · γ × (γ × t)− Ω · [γ × (γ × t)]t)

− [Vt · γ × t−V · (γ × t)t] [β − Ω · γ × (γ × t)] + V · γ × t (e3 · Ω×γ)[β − Ω · γ × (γ × t)]

+ e3 · Γw
t [β − Ω · γ × (γ × t)]2 + (Ω×V)(γ × t)[β − Ω · γ × (γ × t)] = 0.

(3.5.48)

Proof. The normal velocity β of an image contour follows Equation (3.5.33), which holds for both

stationary curves, Corollary 3.5.5, and for occluding contours, Theorem 3.5.8. Differentiating it with

respect to time,

ρtβ + βtρ =ρtΩ · γ × (γ × t) + ρΩt · γ × (γ × t) + ρΩ[γ × (γ × t)]t (3.5.49)

+ (γ × t)t(V − Ω×T ) + (γ × t)(Vt − Ωt × T − Ω×V)

Rearraging the terms,

ρt[β − Ω · γ × (γ × t)] + ρ[βt − Ωt · γ × (γ × t)− Ω · [γ × (γ × t)]t]

= (γ × t)t(V − Ω×T ) + (γ × t)(Vt − Ωt × T − Ω×V). (3.5.50)
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Setting t = 0,

ρt[β − Ω · γ × (γ × t)] + ρ[βt +−Ωt · γ × (γ × t)− Ω · [γ × (γ × t)]t]

= (γ × t)tV + (γ × t)(Vt − Ω×V) (3.5.51)

Now, from Equation 3.5.1, we can plug-in an expression for ρt at t = 0:

(ρe>3 Ω×γ + Vz + e>3 Γw
t )[β − Ω · γ × (γ × t)] + ρ(βt − Ωt · γ × (γ × t)− Ω · [γ × (γ × t)]t)

= (γ × t)tV + (γ × t)(Vt − Ω×V), (3.5.52)

which is analogous to Equation 7.28 of [120, p.167], but this time with corrected temporal derivatives

and with occluding contours also being included. Now, eliminating depth ρ using Equation 3.5.35,

e.g., by multiplying the above by [β − Ω · γ × (γ × t)], we obtain:

[Vz(β − Ω · γ × (γ × t)) + (V · γ × t) e3 · Ω×γ+

e3 · Γw
t (β − Ω · γ × (γ × t))] [β − Ω · γ × (γ × t)]

+ V · γ × t [βt − Ωt · γ × (γ × t)− Ω · [γ × (γ × t)]t] =

[Vt · γ × t + V(γ × t)t − (Ω×V)(γ × t)] [β − Ω · γ × (γ × t)].

(3.5.53)

Rearranging the terms, we obtain the desired equation. ¥

Theorem 3.5.11. The first spatial derivative of image apparent motion of both a fixed curve and

an occluding contour under epipolar correspondence is given by:

γst =
(
−V
ρ

+ e>3
V
ρ

γ

)
ρs

ρ
− e>3

V
ρ

γs + Ω×γs − (e>3 Ω×γs)γ − (e>3 Ω×γ)γs, (3.5.54)

which is parametrized by rotational and depth-normalized translational velocities (5 parameters),

depth-normalized spatial derivative of depth (1 parameter), a total of 7 parameters. Note that the

derivative of depth ρs can be expressed in terms of 3D curve geometry as ρs = e>3 Γs

Proof. Equation 3.5.54 follows by differentiating the fixed flow (3.5.14) with respect to s, observing

that only ρ and γ depend on s. The formula for ρs is obtained from the observation that the dot

product of Γ = ργ with e3 gives e>3 Γ = ρ. Differentiating this with respect to s gives ρs = e>3 Γs. ¥

Theorem 3.5.1 gives an expression for the image acceleration of a moving 3D point, which

includes points lying on any type of contour (even non-rigid), in terms of the evolution of the 3D

curve. Since the latter is expressed in terms of a fixed world coordinate system, the motion of the

object and the motion of the cameras are written down separately, even though they exert joint

effects on image velocity.

Theorem 3.5.12. The image acceleration of an occluding contour under epipolar parametrization

is given by:

γtt = (Ω2
× + [Ωt]×)γ − e>3 (Ω2

× + [Ωt]×)γ + 2Ω×
Γw

t

ρ
+

Vt

ρ
− 2ρt

ρ
γt +

e>3 Γw
t

ρ
γt

− e>3 Γw
t

ρ
Ω×γ − e>3 Vt

ρ
γ − 2e>3 Ω×Γw

t

ρ
γ, at t = 0,

(3.5.55)
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where γt and ρt are given by Equations 3.5.14 and 3.5.13, and Γw
t is dependent on curvature,

Equation 3.5.41.

Proof. The first part of the proof is the same as the proof of Theorem 3.5.1. Substituting Equa-

tion 3.5.2 into Equation 3.5.12 we get:

γtt = (Ω2
×+[Ωt]×)γ+

2Ω×Γw
t

ρ
+

Γw
tt

ρ
+

Vt

ρ
−2ρtγt

ρ
−[e>3 (Ω2

×+[Ωt]×)γ]γ−e>3 Vt

ρ
γ−2e>3 Ω×Γw

t

ρ
γ−e>3 Γw

tt

ρ
γ.

(3.5.56)

Now, let v be the viewing direction in world coordinates, so that:

γ = Rv, (3.5.57)

and let f be the normal to the image plane in world coordinates, so that

e3 = Rf . (3.5.58)

Thus, we have that

e>3 γ = f>R>Rv = f>v = 1. (3.5.59)

Note also that at t = 0 we have f = e3 and γ = v. Now, the condition for epipolar parametrization

of an occluding contour, Equation 3.2.22, can be expressed as:

Γw
t = λv, (3.5.60)

for some constant λ. Taking the dot product with f we have:

λ = f>Γw
t , (3.5.61)

and, substituting back we have

Γw
t = f>Γw

t v. (3.5.62)

Differentiating with respect to time gives:

Γw
tt = λtv + λvt = λtv + f>Γw

t vt. (3.5.63)

Taking the dot product with f :

f>λtv = f>Γw
ttλt = f>Γw

tt. (3.5.64)

Thus

Γw
tt = f>Γw

ttv + f>Γw
t vt, (3.5.65)

and at t = 0 we have

Γw
tt(0) = e3Γw

ttγ + e>3 Γw
t vt(0). (3.5.66)

In order to get vt(0) in terms of γ we write

γt = Rtv +Rvt, (3.5.67)
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thus

vt = γt − Ω×γ. (3.5.68)

Substituting back into (3.5.66), we have

Γw
tt = e>3 Γw

ttγ + e>3 Γw
t − e>3 Γw

t Ω×γ. (3.5.69)

Plugging this equation onto (3.5.56), the e3γ
w
ttγ/ρ terms cancel out, giving the final equation. ¥

3.6 Projecting Differential Geometry of Surfaces

Previous sections related the differential geometry of moving points and deforming curves with dif-

ferential properties of their projected image onto a moving camera. This section addresses the

relationship between the differential geometry of a surface and the differential geometry of its pro-

jection, namely image velocities optical flow and accelerations.

Theorem 3.6.1. (Spatial variation of the image velocity field in terms of surface). Consider an

image point γ arising from Γ lying on a twice-differentiable surface with normal N and having

Weingarten map Kc in camera coordinates, under differential camera motion Ω,V. Then the image

velocity γt = (u, v, 1)> has first-order and second-order spatial variation





γξt =
(
−V
ρ

+
Vz

ρ
γ

)
ρξ

ρ
− Vz

ρ
e1 + Ω×e1 + Ωyγ − (e>3 Ω×γ)e1

γηt =
(
−V
ρ

+
Vz

ρ
γ

)
ρη

ρ
− Vz

ρ
e2 + Ω×e2 − Ωxγ − (e>3 Ω×γ)e2.

(3.6.1)





uξξ = (−Vx + Vzξ)
ρξξ

ρ2
− 2(−Vx + Vzξ)

ρ2
ξ

ρ3
+ Vz

ρξ

ρ2
+ 2Ωy

uξη = (−Vx + Vzξ)
ρξη

ρ2
− 2(−Vx + Vzξ)

ρξρη

ρ3
+ Vz

ρη

ρ2
+ Ωx

uηη = (−Vx + Vzξ)
ρξξ

ρ2
− 2(−Vx + Vzξ)

ρ2
η

ρ3

vξξ = (−Vy + Vzη)
ρξξ

ρ2
− 2(−Vy + Vzη)

ρ2
ξ

ρ3

vξη = (−Vy + Vzη)
ρξη

ρ2
− 2(−Vy + Vzη)

ρξρη

ρ3
+ Vz

ρξ

ρ2
+ Ωy

vηη = (−Vy + Vzη)
ρηη

ρ2
− 2(−Vy + Vzη)

ρ2
η

ρ3
+ Vz

ρη

ρ2
+ 2Ωx

(3.6.2)

Proof. For the first-order image motion field, use the general Equation 3.5.54 for an image curve

given in Theorem 3.5.11, where here the image curve is taken to be along one of the coordinate axes,

so that the parameter s can be taken as ξ or η. The formula admits the specific form given in this

theorem by observing that γξ = e1 and γη = e2. ¥
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Theorem 3.6.2. (relating depth derivatives to differential geometry of the surface) The first order

relation states that the normalized depth gradient is related to the surface normal by

∇ρ
ρ

= − (Nx, Ny)
N · γ , N =

ρξ

ρ e1 + ρη

ρ e2 − (ρξ

ρ ξ + ρη

ρ η + 1)e3√(
ρξ

ρ

)2

+
(

ρη

ρ

)2

+
(

ρξ

ρ ξ + ρη

ρ η + 1
)2
. (3.6.3)

when N · γ 6= 0, i.e., when the point does not lie on an occluding contour. For an occluding contour

point the depth gradient blows up.

Proof. The surface can be described by Γ(ξ, η) = ργ = [ρξ, ρη, ρ]>. Differentiating Γ = ργ we have




Γξ = ρξγ + ργξ = ρξγ + ρe1

Γη = ρηγ + ργη = ρηγ + ρe2 .

The vectors Γξ and Γη span the tangent plane to the surface. We can isolate ρξ and ρη by taking

the scalar product with surface normal N




0 = ρξN · γ + ρe1 ·N
0 = ρηN · γ + ρe2 ·N ,

(3.6.4)

which gives 



ρξ = − ρ

N · γ Nx

ρη = − ρ

N · γ Ny,
(3.6.5)

deriving the expression for ∇ρ
ρ . Observe that ∇ρ = (ρξ, ρη) is invariant to the direction of N. The

surface normal N can be obtained from N = − Γξ×Γη

‖Γξ×Γη‖ . First,

Γξ × Γη = (ρξγ + ρe1)× (ρηγ + ρe2)

= ρρξγ × e2 + ρρηe1 × γ + ρ2e3

= ρρξ(ξe3 − e1) + ρρη(ηe3 − e2) + ρ2e3

= ρ2

[
−ρξ

ρ
e1 − ρη

ρ
e2 + (

ρξ

ρ
ξ +

ρη

ρ
η + 1)e3

]
,

(3.6.6)

which after normalizing gives the result. ¥

Theorem 3.6.3. The Hessian of depth is given by




ρξξ =
2γ>Kcγρ

2N2
x

(N · γ)3
+

[
4ργ>Kce1 + 2Nx

]
ρNx

(N · γ)2
+

2e>1 Kce1ρ
2

N · γ

ρηη =
2γ>Kcγρ

2N2
y

(N · γ)3
+

[
4ργ>Kce2 + 2Ny

]
ρNy

(N · γ)2
+

2e>2 Kce2ρ
2

N · γ

ρξη =
2γ>Kcγρ

2NxNy

(N · γ)3
+

[
2ργ>Kce2 + Ny

]
ρNx +

[
2ργ>Kce1 + Nx

]
ρNy

(N · γ)2
+

2e>2 Kce1ρ
2

N · γ
(3.6.7)
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where Kc = 1
2RKR

>
, K is the principal curvature matrix of the surface,

K =



−κ1 0 0

0 −κ2 0

0 0 0


 , (3.6.8)

representing a canonical osculating paraboloid, and R, T transforms from the local Monge surface

patch coordinates Γ to the camera coordinates Γ as Γ(t) = R(t)Γ(t) + T (t), so that R(t) = R(t)R0,

and T (t) = R(t)T 0 + T (t).

Proof. The second spatial derivatives of ρ are computed by considering an explicit osculating

paraboloid equation as in the next section. We can then differentiate Equation (B.2.10) with respect

to ξ, η and evaluate the result at the center point, to get:

ρξξ =

[
4ργ>Kce1 + 2Nx

]
ρξ + 2γ>Kcγρ

2
ξ + 2e>1 Kce1ρ

2

N · γ (3.6.9)

ρηη =

[
4ργ>Kce2 + 2Ny

]
ρη + 2γ>Kcγρ

2
η + 2e>2 Kce2ρ

2

N · γ (3.6.10)

ρξη =

[
2ργ>Kce2 + Ny

]
ρξ +

[
2ργ>Kce1 + Nx

]
ρη + 2γ>Kcγρηρξ + 2e>2 Kce1ρ

2

N · γ , (3.6.11)

where Kc = 1
2R0KR

>
0 and ρξ, ρη are given by Equation 3.6.3. Substituting the above values

into (3.6.2), we get the desired second-order derivatives of flow. ¥

3.7 Conclusion

In this chapter we presented the differential-geometric theory of projection and reconstruction of

general curves from multiple views. We studied how the differential geometry of curves behaves

under perspective projection, including the effects of intrinsic parameters. For instance, we studied

how the tangent, curvature, and curvature derivative of a space curve projects onto an image, and

how the motion of the camera and of the curve relate to the projections. We also gave formulas for

reconstructing differential geometry, given differential geometry at corresponding points measured

in two views. In particular, this gives a novel result of reconstructing space curve torsion, given

corresponding points, tangents, curvatures, and curvature derivatives measured in two views. We

determined that there are no constraints in two views – any pair of corresponding points with

attributed tangents, curvatures, and curvature derivatives are possible matches, as long as the basic

point epipolar constraint is satisfied. There is, however, a constraint in three views: from two

views one can transfer differential geometry onto a third and enforce measurements to match the

reprojection. This has been used in a recent practical work in curve-based multiview stereo by the

authors [47].

This work is part of a greater effort of augmenting Multiple View Geometry to model curved

structures. Work on practical camera calibration based on curves using the formulas in this chapter
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is underway. We have also been studying the multiview differential geometry of surfaces and their

shading.



Chapter 4

Camera Pose Estimation Using

Curve Differential Geometry

4.1 Introduction

A key problem in the reconstruction of structure from multiple views of it is the determination of

relative pose among cameras as well as the intrinsic parameters for each. The classical method is

to place a “calibration jig”, e.g., a set of checkerboard patterns, in the scene and to determine a

set of corresponding points across views whose relative position is known. This correspondence can

then be used to determine each camera’s intrinsic parameter matrix Kim as well as the relative pose

between pairs of cameras. While this is a well-known method, especially in photogrammetry, with

well-crafted tools, e.g., in matlab [15], the process is time consuming and labor intensive. It also

leaves out a large number of images taken without a calibration jig in place.

A paradigm shift in the past couple of decades is the use of interest points or key features in

object recognition and multiview geometry problems, which has led to the formulation of automatic

methodologies to recover intrinsic parameters and relative pose. The paradigm shift came in response

to a perceived failure on the part of segmentation techniques to produce reliable regions or contours

that correspond to parts of objects in the image. Instead, the new paradigm relies on a set of

isolated keypoints such as Harris corners [67] or sift/hog [101] features which remain somewhat

stable over view and other variations. As long as there is a sufficient number of keypoints between

two views, a random selection of a few feature correspondences using ransac [54,69] can be verified

by measuring the number of inlier features. These corresponding features then serve the same role

as the keypoints selected from the calibration jig, although relative distances and angles in 3D

are not available. Thus, these methods lead to an equivalence class of non-metric reconstructions.

Constraints on the intrinsic parameters across the views and a single distance in 3D leads to a metric

reconstruction [69].

These methods are currently in popular use through packages such as the Bundler used in

77
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applications such as Phototourism [1]. The core technology underlying these methods are the notions

of the essential matrix E, developed by Longuet-Higgins [99] where intrinsic parameters are available,

and of the fundamental matrix F , devised by Faugeras, Luong and others [52,102,106] which works

directly with image pixel coordinates thus not requiring intrinsic parameters. Typically a set of

seven or eight pairs of corresponding points are used to obtain the fundamental matrix [69]. In

general eight point algorithms work better in isolation, but when used with ransac seven point

algorithms are preferred due to decreased probability of outliers and therefore reducing the number

of necessary ransac iterations exponentially.

Two major drawbacks limit the applicability of automatic methods based on interest points.

First, it is well-known that in practice the correlation of interest points works for views with a

limited baseline, according to some estimates no greater than 30◦ [113], Figure 4.1(a). In contrast,

certain curve fragments in the image, e.g., those corresponding to sharp ridges, reflectance curves,

etc, persist stably over a much larger range of views. Second, the approach relies on an abundance

of features so that some of them survive the various variations between views. While this is true in

many scenes, as evidenced by the popularity of this approach, in numerous others this is not the case,

such as (i) Homogeneous regions, e.g., from man-made objects, corridors, etc., Figure 4.1(b); (ii)

Multiple moving objects require their own set of features which may not be sufficiently abundant

without sufficient texture, Figure 4.1(c); (iii) Non-rigid objects require a rich set of features per

roughly non-deforming patch, Figure 4.1(d). In all these cases, however, there is sufficient image

curve structure, motivating augmenting the use of interest points with that of image curve structure.

The use of image curve fragments as the basic structure for auto-calibration is faced with two

significant challenges. First, edge linking procedures do not produce curve segments which persist

stably across images. Rather, an image curve fragment in one view may be segmented or grouped

with other curve fragments. Thus, while the underlying curve geometry correlates well across views,

the individual curve fragments do not, Figure 4.2(a-h). Second, even when the image curve frag-

ments correspond exactly, there is an intra-curve correspondence ambiguity, Figure 4.2(i). This

ambiguity prevents the use of corresponding curve points to solve for the unknown pose and intrin-

sic parameters. These challenges both point to the use of small curve fragments, as captured by the

differential geometry of a curve at a point.

Related work: Previous work generally has relied on the concept of matching epipolar tangencies

on closed curves, as reviewed briefly below: Let a 3D point Γw, which has camera coordinates Γ1 and

Γ2 in camera 1 and 2, respectively, have image projections γ1 and γ2, respectively, i.e., Γ1 = ρ1γ1

and Γ2 = ρ2γ2, where ρ1 and ρ2 are the depths of the point Γw in each camera, respectively. Let

rotation matrix R and translation vector T describe the relative pose relating Γ1 and Γ2 as

Γ2 = RΓ1 + T (4.1.1)

Taking the cross-product with T on both sides, gives

T × Γ2 = T ×RΓ1 (4.1.2)
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(a) (b)

(c) (d)

Figure 4.1: (a) Views with wide baseline separation may not have any interest points in common,
but they often do share common curve structure. There may not always be sufficient interest points
matching across views of homogenous objects such as for the sculpture in (c), but there is sufficient
curve structure. (b) Each moving object requires its own set of features, but they may not be
sufficient without a rich texture surface. (d) Non-rigid structures face the same issue.
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(a)

Figure 4.2: Challenges in using curve fragments in multiview geometry: (a) instabilities
with slight changes in viewpoint, as shown for two views in (b) and zoomed in selectively
in (c-h) real examples of edge grouping instabilities, such as a curve in one being broken
into two in another view, a curve being linked onto background, a curve being detected in
one view but absent in another, a curve being fragmented into various pieces at junctions
in one view but fully linked in another view, different parts of a curve being occluded in
different views, and a curve undergoing shape deformation from one view to the other. (i)
Point correspondence ambiguity along the curve.
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(a) (b)

Figure 4.3: The problem of finding the camera pose R, T given space curves in a world
coordinate system and their projections in an image coordinate system (a), and an approach
to that consisting of (b) finding the camera pose R, T given 3D point-tangents (i.e., local
curve models) in a world coordinate system and their projections in an image coordinate
system.

which after scalar product with Γ2 reduces to,

Γ2 · (T ×RΓ1) = 0 (4.1.3)

Γ2>(T×R)Γ1 = 0, (4.1.4)

where T× is a skew-symmetric matrix formed from the translation vector T , i.e., T×Γ = T ×Γ. The

essential matrix is then given by:

E = T×R. (4.1.5)

Using Γ1 = ρ1γ1 and Γ2 = ρ2γ2 we get

γ2>Eγ1 = 0, (4.1.6)

where E is the well-known essential matrix [99] which related the coordinates of two points in

two views (with known intrinsic parameters). From a geometric perspective the camera center c1

of camera 1 which as the origin of the camera coordinate 1 maps to Γ2 = 0 + T according to

Equation 4.1.1. Thus, T is the vector from c1 to c2. Second, the vector Eγ1 can be written as

Eγ1 = T×Rγ1 = T ×Rγ1, (4.1.7)

and interpreted as follows: Rγ1 is the vector from c1 to γ1 in the coordinate of the second camera,

Figure 4.4. The vector T ×Rγ1 is then orthogonal to the vector T = −−→c1c2 and Rγ1, which span the

epipolar plane. The essential constraint of Equation 4.1.6 implies γ2 · (T × Rγ1) = 0, i.e., that γ2

lies on this epipolar plane. Thus, γ2 is on the intersection of the epipolar plane and the second image
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Figure 4.4: Interpretation of the essential matrix equation. All vectors are written with
respect to the 3D coordinate system of camera 2.

plane, namely, the epipolar line. The same argument holds for γ1 since the equation is symmetric,

Figure 4.4. The epipolar line itself corresponding to γ1 is the intersection of the epipolar plane and

the image plane, i.e., 



γ2>Eγ1 = 0

e>3 γ2 = 0.
(4.1.8)

The epipoles e1
2 and e2

1, the intersections of −−→c1c2 with the image 1 and 2, respectively, are the right

and left null vectors of E, respectively, since they lie all on the epipolar planes, i.e.,

Ee1
2 = 0, e2>

1 E = 0. (4.1.9)

Epipolar Tangency Constraint: The previous discussion of relations between two corresponding

points can be extended to the relationship between the differential geometry of two curves γ1(s) in

the first view and a curve γ2(s) in a second view, i.e.,

γ1>(s)Eγ2(s) = 0. (4.1.10)

The tangents t1(s) and t2(s) are related by differentiating

g1(s)t1
>
(s)Eγ2(s) + γ1>(s)Eg2(s)t2(s) = 0, (4.1.11)

where g1(s) and g2(s) are the respective speeds of parametrization of the curves γ1(s) and γ2(s). It is

then clear that when one of the tangents t1(s) is along the epipolar plane also, i.e., t1
>
(s)Eγ2(s) = 0

at a point s, then by necessity γ1>(s)Et2(s) = 0. Thus, epipolar tangency in image 1 implies epipolar

tangency in image 2 at the corresponding point, Figure 4.5.

Porrill and Pollard 1991: The epipolar tangency constraint was first shown in [126] who use

linked edges and a coarsely specified epipolar geometry in the form of the essential matrix E. This

initial estimate E is used to find a sparse set of epipolar tangencies, including those at corner in
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Figure 4.5: Correspondence of epipolar tangencies used in curve-based camera calibration.
An epipolar line on the left, whose tangency at a curve is marked in a certain color, must
correspond to the epipolar line on the right having tangency on the corresponding curve,
marked with the same color. This concept works for both static curves and occluding
contours.

Figure 4.6: Illustrating the differential update of epipolar tangencies through the use of
the osculating circle or curvature information.



84

Figure 4.7: From [140]: given hypothesized epipoles, three corresponding epipolar lines are
needed to solve for the complete epipolar geometry. The authors easily obtain two such
correspondences at an instant t = t0 (silhouette in gray) though the outermost epipolar
tangencies, and a third correspondence is obtained by keeping the camera fixed but taking
a snapshot at t = t1 and using an outer epipolar tangency (at the white silhouette).

each view. They are matched from one view to another manually, which is then used to refine

the estimate E, see Figure 4.6 , by minimizing the residual γ1>(s)Eγ2(s) over all matches in an

iterative two-step scheme: the corresponding points are kept fixed and E is optimized in the first

step in closed form and then E is kept fixed and the points are updated in a second step using a

closed form solution based on an approximation of the curve as the osculating circle. This approach

assumes that closed curves are available and that the order of epipolar tangencies are preserved.

Kahl and Heyden [85] consider the special case when four corresponding conics are available in

two views, where the intrinsic parameters are unknown. In this algebraic approach, each pair of

corresponding conics provide a pair of tangencies and therefore two constraints. Four pairs of conics

are then needed. If the intrinsic parameters are available, then the absolute conic is known giving

two constraints on the epipolar geometry, so that only 3 conic correspondences are required. This

approach is only applied to synthetic data which shows the scheme to be extremely sensitive to even

when a large number of conics (50) is used.

Kaminski and Shashua [86] extended this work to general algebraic curves viewed in multiple

uncalibrated views. Specifically, they extend Kruppa’s equations to describe the epipolar constraint

of two projections of a general algebraic curve. The proposed solution requires solving systems of

polynomial equations where recent computational algebraic geometry algorithms apply [31].

Sinha et. al. [140] consider a special configuration where multiple static cameras view a moving

object with a controlled background, Figure 4.7. Observe that the epipolar geometry between any

pair of cameras is fixed, each hypothesized pair of epipoles representing a point in 4D is then probed

for a pair of epipolar tangencies across video frames. Specifically, two pairs of tangencies in one

frame in time and a single pair of tangencies in another frame provide a constraint in that they

must all intersect in the same point. This allows for an estimation of epipolar geometry for each

pair of cameras, which are put together for refinement using bundle adjustment, providing intrinsic

parameters and relative pose.
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Overview. The paradigm explored in this chapter is that small curve fragments, or curvelets, can

be used as the basic image structure to correlate across views. The intent is to use curve geometry

as a complementary approach to the use of interest points in cases where these fail. Previous work

in exploring local geometric groupings [144] has shown that tangent and curvature as well as the

sign of curvature derivative can be reliably estimated. Unfortunately, differential geometry does not

constrain point correspondence in two views and thus does not add any information in two views!

However, it does significantly constrain three views or more. It is shown in [46] that the differential

geometry at two corresponding points in two views reconstruct the differential geometry of the space

curve they arise from. This constrains the differential geometry of corresponding curves in a third

view. In the simplest case only first order differential geometry or tangent is used, and that is what

this chapter explores.

The fundamental questions underlying the use of short curve fragments, essentially points aug-

mented with differential-geometric attributes, is how many such curves are needed, what order of

differential geometry is required, and how many views? This chapter explores the use of first order

differential geometry with the minimum number of views, namely three. It considers two problems

Problem 1: For a camera with known intrinsic parameters, how many corresponding pairs of point-

tangents in space specified in the world coordinates, and point-tangents in 2D specified in the image

coordinates, are required to establish the pose of the camera with respect to the world coordinates,

Figure 4.3(b)? This problem is useful when some reconstruction is already available either from other

views [47] or because a 3D model of the object is available. It is also useful in the case of highly

accurately calibrated moving binocular video to register the pose in one frame to that in another.

In general, this is a basic Problem of interest in pose estimation, camera calibration, triangulation,

etc., in computer vision, robotics, computer graphics, photogrammetry and cartography.

Problem 2: For three cameras with known intrinsic parameters, how many corresponding triplets

of point-tangents are needed to establish the relative pose of the cameras (i.e., the trifocal relative

pose)?

4.2 Determining Camera Pose from a Pair of 3D–2D Point-

Tangent Correspondences

Our approach to treating Problem 1, in contrast to the global treatment as in algebraic geometry,

is a local differential formulation: Given a local curve model consisting of points and tangents

in 3D projecting to points and tangents in 2D, how many such correspondences are needed to

estimate camera pose, Figure 4.3(b)? The classic result with correspondences of 3D points and

2D projections, is that 3 points are required to estimate camera pose [54]. Consider (2D, 3D)

point correspondences, in the form of 3D points (Γ1,Γ2, . . . ,Γn) and 2D points (γ1,γ2, . . . ,γn),

respectively. The coordinates of the 3D points are typically known from a calibration jig, or else

from a previous reconstruction. This process is called camera resectioning in the photogrammetry

literature (and by Hartley and Zisserman [69]), and also is known as camera calibration when this
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is used with the purpose of obtaining the intrinsic parameter matrix Kim where the camera pose

relative to the calibration jig is not of interest. This is also related to the perspective n-point problem

(PnP) originally introduced in [54], which can be stated as the recovery of the camera pose from n

corresponding 3D-2D point pairs [77] or alternatively of depths [65].1. The direct solution to P3P,

also known as the triangle pose problem, is given in 1841 [63]. The direct solution equates the sides

of the triangle with those of the vectors in the camera domain, i.e.,





‖ρ1γ1 − ρ2γ2‖2 = ‖Γw
1 − Γw

2 ‖ = L2
12

‖ρ2γ2 − ρ3γ3‖2 = ‖Γw
2 − Γw

3 ‖ = L2
23

‖ρ3γ3 − ρ1γ1‖2 = ‖Γw
3 − Γw

1 ‖ = L2
31

(4.2.1)

where ρ1, ρ2, ρ3 are depths in the camera coordinates. Expanding this equation gives a system of

three quadratic equations





γ>1 γ1ρ
2
1 − 2γ>1 γ2ρ1ρ2 + γ>2 γ2ρ

2
2 = L2

12

γ>2 γ2ρ
2
2 − 2γ>2 γ3ρ2ρ3 + γ>3 γ3ρ

2
3 = L2

23

γ>3 γ3ρ
2
3 − 2γ>3 γ1ρ3ρ1 + γ>1 γ1ρ

2
1 = L2

31

(4.2.2)

Following traditional methods going back to the German mathematician Grunert in 1841 [63] and

later Finsterwalder in 1937 [53], factor out one variable, say ρ.




ρ2
1[γ

>
1 γ1 − 2γ>1 γ2(

ρ2

ρ1
) + γ>2 γ2

(
ρ2

ρ1

)
] = L2

12

ρ2
1[γ

>
2 γ2

(
ρ2

ρ1

)2

− 2γ>2 γ3

(
ρ2

ρ1

)(
ρ3

ρ1

)
+ γ>3 γ3

(
ρ3

ρ1

)
] = L2

23

ρ2
1[γ

>
3 γ3

(
ρ3

ρ1

)2

− 2γ>3 γ1

(
ρ3

ρ1

)
+ γ>1 γ1] = L2

31

(4.2.3)

so that the system is reduced to two equations involving only the ratios ρ2
ρ1

and ρ3
ρ1

,





L2
23

[
γ>1 γ1 − 2γ>1 γ2

(
ρ2

ρ1

)
+ γ>2 γ2

(
ρ2

ρ1

)2
]

=

L2
12

[
γ>2 γ2

(
ρ2

ρ1

)2

− 2γ>2 γ3

(
ρ2

ρ1

)(
ρ3

ρ1

)
+ γ>3 γ3

(
ρ3

ρ1

)2
]
.

L2
31

[
γ>1 γ1 − 2γ>1 γ2

(
ρ2

ρ1

)
+ γ>2 γ2

(
ρ2

ρ1

)2
]

=

L2
12

[
γ>3 γ3

(
ρ3

ρ1

)2

− 2γ>3 γ1

(
ρ3

ρ1

)
+ γ>1 γ1

]
,

1The camera resectioning problem does not assume that the camera projection matrix is fixed, while in
the PnP problem the intrinsic parameters and camera pose remains fixed across views [78]
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



(L2
12 − L2

23)γ
>
2 γ2

(
ρ2

ρ1

)2

+ 2L2
23γ

>
1 γ2

(
ρ2

ρ1

)
− 2L2

12γ
>
2 γ3

(
ρ3

ρ1

) (
ρ2

ρ1

)

+ L2
12γ

>
3 γ3

(
ρ3

ρ1

)2

= L2
23γ

>
1 γ1

L2
31γ

>
2 γ2

(
ρ2

ρ1

)2

− 2L2
31γ

>
1 γ2

(
ρ2

ρ1

)
− L2

12γ
>
3 γ3

(
ρ3

ρ1

)2

+ 2L2
12γ

>
3 γ1

(
ρ3

ρ1

)

=
(
L2

12 − L2
31

)
γ>1 γ1.

(4.2.4)

Grunert eliminates
(

ρ2
ρ1

)2

by a linear combination of these equations, which gives an expression

for ρ2
ρ1

that is quadratic in ρ3
ρ1

. After substituting this back into one of the above equations, a 4th

order polynomial in ρ3
ρ1

results. Finsterwalder takes a slightly different approach that leads to a

cubic polynomial by multiplying the second equation with λ and adding it to the first equations.

The combined equation is quadratic in ρ2
ρ1

and ρ3
ρ1

and linear in λ. He solves for ρ3
ρ1

in terms of ρ2
ρ1

and λ using a standard solution to a quadratic which involves an expression of ρ2
ρ1

and λ under a

square root. Since the equations hold for all λ, a λ for which this expression is a perfect square is

sought. This involves finding λ as a root of a cubic polynomial, leading to an expression for ρ3
ρ1

that

is linear in ρ2
ρ1

, geometrically corresponding to two intersecting lines. This is better than Grunert’s

solution which involves solving a 4th order polynomial.

The camera resectioning problem can be solved using three 3D ↔ 2D point correspondences

when the intrinsic parameters are known, and six points when the intrinsic parameters are not

known. The camera pose can be solved using four point correspondences when only the focal length

is unknown, but all the other intrinsic parameters are known [20], Table 4.1. We now show that when

intrinsic parameters are known, only a pair of point-tangent correspondences are required

to estimate camera pose.

Case Unknowns Min. # Corresp.

Calibrated (Kim known) Camera pose R, T 3

Focal length unknown Pose R, T and f 4

Uncalibrated (Kim unknown) Camera model Kim, R, T 6

Table 4.1: The number of 3D–2D point correspondences needed to solve for camera pose
and intrinsic parameters.

Theorem 4.2.1. Given a pair of 3D point tangents {(Γ1,T 1), (Γ2,T 2)} described in a world co-

ordinate system and their corresponding perspective projections (γ1, t1), (γ2, t2), the pose of the

camera R, T relative to the world coordinate system can be solved up to a finite number of solutions,
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assuming that the intrinsic parameters Kim are known, by solving for the system




γ>1 γ1 ρ
2
1 − 2γ>1 γ2 ρ1ρ2 + γ>2 γ2 ρ

2
2 = (Γw

1 − Γw
2 )>(Γw

1 − Γw
2 ),

Q(ρ1, ρ2) = 0,
(4.2.5)

where

Q(ρ1, ρ2) = A3(EH2 − FHK +GK2)2 +AC2(EJ2 − FJL+GL2)2

− 2A2C(EH2 − FHK +GK2)(EJ2 − FJL+GL2) + [−AB(EH2 − FHK +GK2)

+BC(EJ2 − FJL+GL2)] [A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)]

+ C[A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)]2 = 0
(4.2.6)

is an eight degree polynomial, where the parameters A through L are defined as




A = 1− 2γ>1 t1B1 + γ>1 γ1B
2
1

B = [2(γ>1 t1)− 2γ>1 γ1B1]A1

C = (γ>1 γ1)A
2
1 − 1

E = 1− 2γ>2 t2B2 + γ>2 γ2B
2
2

F = [2(γ>2 t2)− 2γ>2 γ2B2]A2

G = (γ>2 γ2)A
2
2 − 1

H = γ>1 γ2A1A2 − (T w
1 )>T w

2

J = [γ>2 t1 − γ>1 γ2B1]A2

K = [γ>1 t2 − γ>1 γ2B2]A1

L = t>1 t2 − γ>2 t1B2 − γ>1 t2B1 + γ>1 γ2B1B2,

(4.2.7)

where 



A1 =
(Γw

1 − Γw
2 )>T w

1

(ρ1γ1 − ρ2γ2)>γ1

A2 =
(Γw

1 − Γw
2 )>T w

2

(ρ1γ1 − ρ2γ2)>γ2





B1 =
(ρ1γ1 − ρ2γ2)>t1
(ρ1γ1 − ρ2γ2)>γ1

B2 =
(ρ1γ1 − ρ2γ2)>t2
(ρ1γ1 − ρ2γ2)>γ2

,

(4.2.8)

and where




ρ1
g1
G1

= − A(EH2 − FHK +GK2)− C(EJ2 − FJL+GL2)
A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)

.

ρ2
g2
G2

= − E(AH2 −BHJ + CJ2)−G(AK2 −BKL+ CL2)
E(2AHK −BHL−BKJ + 2CJL)− F (AK2 −BKL+ CL2)

,

(4.2.9)

and 



ρ′1
G1

= A1 −B1ρ1
g1
G1

ρ′2
G2

= A2 −B2ρ2
g2
G2

.

(4.2.10)
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Finally,



R =

[
(Γw

1 − Γw
2 ) T w

1 T w
2

]−1 [
ρ1γ1 − ρ2γ2 ρ g1

G1
t1 + ρ′1

G1
γ1 ρ2

g2
G2

t2 + ρ′2
G2

γ2

]

T = ρ1γ1 −RΓw
1 .

(4.2.11)

Proof. The proof proceeds by (i) writing all projection equations for each point and their derivatives

in the simplest form involving R, T , depths ρ1 and ρ2, depth derivatives ρ′1 and ρ′2, and speed of

parametrizations G1 and G2, respectively; (ii) eliminating the translation T by subtracting point

equations; (iii) eliminating R using dot products among equations, so that the remaining equations

only have the local unknowns depths, depth derivatives, and parametrization speeds. (iv) eliminate

the unknowns ρ′1 and ρ′2, (v) eliminate g1 and g2, (vi) solve for the remaining unknowns ρ1 and ρ2,

(vii) use these to compute all the unknowns.

The image point γ is related to the space point Γ through Γ = ργ, where ρ is depth. The space

point Γ in local coordinates is related to Γw in the world coordinates by a rotation matrix R and

translation T through Γ = RΓw + T . Equating these at each of the two points gives



ρ1γ1 = RΓw

1 + T
ρ2γ2 = RΓw

2 + T ,
(4.2.12)

where ρ1 and ρ2 are the depth at image points γ1 and γ2, respectively. By differentiating with

respect to the parameters of γ1 and γ2 we have:



ρ1g1t1 + ρ′1γ1 = RG1T

w
1

ρ2g2t2 + ρ′2γ2 = RG2T
w
2 ,

(4.2.13)

where ρ1 and ρ2 are depth derivatives with respect to the curve parameter, g1 and g2 are speeds

of parametrization of γ1 and γ2, respectively, and G1 and G2 are the speeds of parametrization of

the space curves Γ1 and Γ2, respectively. The vector Equations 4.2.12 and 4.2.13 represent 3 scalar

equations for each point, so that there are 12 equations in all. The parametrization speeds g1 and

g2 are arbitrary and can be set to 1 uniformly although we keep them in general form. The given

quantities are γ, t, and Γw, T w at each point. The unknowns are R, T (6 unknowns), ρ, ρ′ (4

unknowns), and the two speeds of the curve Γ at the two points, 12 unknowns in all. Therefore, in

principle, two points should provide enough constraints to solve the problem.

First, T is eliminated by subtracting the two Equations (4.2.12)

ρ1γ1 − ρ2γ2 = R(Γw
1 − Γw

2 ), (4.2.14)

which together with Equation 4.2.13 give a system of equations





ρ1γ1 − ρ2γ2 = R(Γw
1 − Γw

2 )

ρ1
g1
G1

t1 +
ρ′1
G1

γ1 = RT w
1

ρ2
g2
G2

t2 +
ρ′2
G2

γ2 = RT w
2 .

(4.2.15)

(4.2.16)

(4.2.17)
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At this stage, the unknowns are ρ1, ρ2,
ρ′1
G1

, ρ′2
G2

, ρ1
g1
G1

, ρ2
g2
G2

, and R, nine numbers in all, which

can potentially be solved through the three vector equations (nine scalar equations) in (4.2.15)–

(4.2.17). The number of unknowns can be reduced by eliminating R in a second step. The matrix

R rotates three known vectors, (Γw
1 − Γw

2 ), T w
1 , and T w

2 to the three unknown vectors on the left

side of these equations, requiring a preservation of vector lengths and mutual angles. The length

and relative angles are obtained from the known dot products, which do not involve R at all. This

provides six equations for the six unknowns {ρ1, ρ2,
g1
G1
, g2

G2
,

ρ′1
G1
,

ρ′2
G2
}. Alternatively, we write these

three equations in matrix form composed from the three vector equations (4.2.15)–(4.2.17), i.e.,
[
ρ1γ1 − ρ2γ2 ρ g1

G1
t1 + ρ′1

G1
γ1 ρ2

g2
G2

t2 + ρ′2
G2

γ2

]
= R

[
(Γw

1 − Γw
2 ) T w

1 T w
2

]
(4.2.18)

This is a system of six equations using product of the left hand matrix with its transpose which

using R>R = I gives





(ρ1γ1 − ρ2γ2)
>(ρ1γ1 − ρ2γ2) = (Γw

1 − Γw
2 )>(Γw

1 − Γw
2 )

(ρ1γ1 − ρ2γ2)
>(ρ1

g1
G1

t1 +
ρ′1
G1

γ1) = (Γw
1 − Γw

2 )>T w
1

(ρ1γ1 − ρ2γ2)
>(ρ2

g2
G2

t2 +
ρ′2
G2

γ1) = (Γw
2 − Γw

2 )>T w
2

(ρ1
g1
G1

t1 +
ρ′1
G1

γ1)
>(ρ1

g1
G1

t1 +
ρ′1
G1

γ1) = 1

(ρ2
g2
G2

t2 +
ρ′2
G2

γ2)
>(ρ2

g2
G2

t2 +
ρ′2
G2

γ2) = 1

(ρ1
g1
G1

t1 +
ρ′1
G1

γ1)
>(ρ2

g2
G2

t2 +
ρ′2
G2

γ2) = (T w
1 )>T w

2 .

(4.2.19)

The first equation is a quadratic in ρ1 and ρ2

γ>1 γ1 ρ
2
1 − 2γ>1 γ2 ρ1ρ2 + γ>2 γ2 ρ

2
2 = (Γw

1 − Γw
2 )>(Γw

1 − Γw
2 ), (4.2.20)

which as a conic in the ρ1–ρ2 plane with negative discriminant

(γ1 · γ2)
2 − (γ1 · γ1)(γ2 · γ2) = −‖γ1 × γ2‖2 < 0 (4.2.21)

is an ellipse. The ellipse is centered at the origin so we can check that it has real points by solving

for ρ1 when ρ2 = 0, giving ρ2
1‖γ1‖2 = ‖Γw

1 − Γw
2 ‖2, or real roots ρ1 = ±‖Γw

1 −Γw
2 ‖

‖γ1‖ .

The remaining five equations involve the additional unknowns {ρ1
g1
G1
, ρ2

g2
G2
,

ρ′1
G1
,

ρ′2
G2
}. The latter

appear in a linear form in the second and third equations, and in quadratic form in the last three

equations. Thus, the terms ρ′1
G1

and ρ′2
G2

can be isolated from the second and third equations and

then used in the last three equations




[(ρ1γ1 − ρ2γ2)
>γ1]

ρ′1
G1

= (Γw
1 − Γw

2 )>T w
1 − [(ρ1γ1 − ρ2γ2)

>t1]ρ1
g1
G1

[(ρ1γ1 − ρ2γ2)
>γ2]

ρ′2
G2

= (Γw
1 − Γw

2 )>T w
2 − [(ρ1γ1 − ρ2γ2)

>t2]ρ2
g2
G2

,

(4.2.22)
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or 



ρ′1
G1

=
(Γw

1 − Γw
2 )>T w

1

(ρ1γ1 − ρ2γ2)>γ1

−
[

(ρ1γ1 − ρ2γ2)>t1
(ρ1γ1 − ρ2γ2)>γ1

]
ρ1
g1
G1

= A1 −B1ρ1
g1
G1

ρ′2
G2

=
(Γw

1 − Γw
2 )>T w

2

(ρ1γ1 − ρ2γ2)>γ2

−
[

(ρ1γ1 − ρ2γ2)>t2
(ρ1γ1 − ρ2γ2)>γ2

]
ρ2
g2
G2

= A2 −B2ρ2
g2
G2

,

(4.2.23)

noting that A1, A2, B1, and B2 depend on only two of the unknowns ρ1 and ρ2. The last three

equations in (4.2.19) can be expanded as





(
ρ1
g1
G1

)2

+ 2(γ>1 t1)
(
ρ1
g1
G1

)(
ρ′1
G1

)
+ (γ>1 γ1)

(
ρ′1
G1

)2

= 1

(
ρ2
g2
G2

)2

+ 2(γ>2 t2)
(
ρ2
g2
G2

)(
ρ′2
G2

)
+ (γ>2 γ2)

(
ρ′2
G2

)2

= 1

(t>1 t2)
(
ρ1
g1
G1

)(
ρ2
g2
G2

)
+(γ>2 t1)

(
ρ1
g1
G1

) (
ρ′2
G2

)
+ (γ>1 t2)

(
ρ2
g2
G2

)(
ρ′1
G1

)
+

(γ>1 γ2)
(
ρ′1
G1

)(
ρ′2
G2

)
= (T w

1 )>T w
2 .

Substituting ρ′1
G1

and ρ′2
G2

from Equations 4.2.23 gives





(
ρ1
g1
G1

)2

+ 2(γ>1 t1)
(
ρ1
g1
G1

)(
A1 −B1

(
ρ1
g1
G1

))
+ (γ>1 γ1)

(
A1 −B1

(
ρ1
g1
G1

))2

= 1

(
ρ2
g2
G2

)2

+ 2(γ>2 t2)
(
ρ2
g2
G2

)(
A2 −B2

(
ρ2
g2
G2

))
+ (γ>2 γ2)

(
A2 −B2

(
ρ2
g2
G2

))2

= 1

(t>1 t2)
(
ρ1
g1
G1

)(
ρ2
g2
G2

)
+ (γ>2 t1)

(
ρ1
g1
G1

)(
A2 −B2

(
ρ2
g2
G2

))
+

(γ>1 t2)
(
ρ2
g2
G2

)(
A1 −B1

(
ρ1
g1
G1

))
+ (γ>1 γ2)

(
A1 −B1

(
ρ1
g1
G1

))(
A2 −B2

(
ρ2
g2
G2

))

= (T w
1 )>T w

2 .

These three equations can be written in summary form using x1 = ρ1
g1
G1

and x2 = ρ2
g2
G2

,





Ax2
1 +Bx1 + C = 0

Ex2
2 + Fx2 +G = 0

H + Jx1 +Kx2 + Lx1x2 = 0,

(4.2.24)

(4.2.25)

(4.2.26)

and where A through L are only functions of the two unknowns ρ1 and ρ2. Thus, the three Equa-

tions 4.2.24–4.2.26 after solving for x1 and x2 express a relationship between ρ1 and ρ2, which

together with Equation 4.2.20 can lead to a solution for ρ1 and ρ2.

Equation 4.2.26, with given values for ρ1 and ρ2, represents a rectangular hyperbola in the x1–

x2 plane, with asymptotes parallel to the axes, Figure 4.8. Moreover, each of the Equations 4.2.24

and 4.2.25 represents a pair of (real) lines in the same plane, parallel respectively to the x2 and x1

axes. We know that there is one mutual intersection of the aforementioned curves, but in general

there should not be more than one.
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Figure 4.8: Diagram of the mutual intersection of Equations 4.2.24–4.2.26 in the x1–x2

plane.

Specifically, the variables x1 and x2 can be solved by rewriting Equation 4.2.26 as

(H + Jx1) + (K + Lx1)x2 = 0, (4.2.27)

giving

x2 = −H + Jx1

K + Lx1
. (4.2.28)

Using this expression in Equation 4.2.25 gives

E
(H + Jx1)2

(K + Lx1)2
− F

H + Jx1

K + Lx1
+G = 0, (4.2.29)

or

E(H + Jx1)2 − F (H + Jx1)(K + Lx1) +G(K + Lx1)2 = 0. (4.2.30)

Reorganizing as a quadratic in x1, this solves for x1 which together with Equation 4.2.24 gives a

constraint on the parameters depending on ρ1 and ρ2,





(EJ2 − FJL+GL2)x2
1 + (2EHJ − FHL− FJK + 2GKL)x1

+(EH2 − FHK +GK2) = 0

Ax2
1 +Bx1 + C = 0.

(4.2.31)

(4.2.32)

The quadratic term is eliminated by multiplying the first equation by A and the second equation by

(EJ2 − FJL+GL2) and subtracting, giving

[A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)]x1+

[A(EH2 − FHK +GK2)− C(EJ2 − FJL+GL2)] = 0,
(4.2.33)
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so that

x1 = − A(EH2 − FHK +GK2)− C(EJ2 − FJL+GL2)
A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)

. (4.2.34)

Substituting back into Equation 4.2.32 gives

A

[
A(EH2 − FHK +GK2)− C(EJ2 − FJL+GL2)

A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)

]2

+

−B A(EH2 − FHK +GK2)− C(EJ2 − FJL+GL2)
A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)

+ C = 0,

(4.2.35)

or

A3(EH2 − FHK +GK2)2 +AC2(EJ2 − FJL+GL2)2

− 2A2C(EH2 − FHK +GK2)(EJ2 − FJL+GL2) + [−AB(EH2 − FHK +GK2)

+BC(EJ2 − FJL+GL2)] [A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)]

+ C[A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)]2 = 0
(4.2.36)

The equation, after expressions for A, B, . . . , L are substituted in, gives a high order polynomial in

ρ1 and ρ2, i.e., Q(ρ1, ρ2) = 0.2 This equation together with Equation 4.2.20 represents a system of

two equations in two unknowns




γ>1 γ1 ρ
2
1 − 2γ>1 γ2 ρ1ρ2 + γ>2 γ2 ρ

2
2 = (Γw

1 − Γw
2 )>(Γw

1 − Γw
2 ),

Q(ρ1, ρ2) = 0,
(4.2.37)

and gives a number of solutions for ρ1, and ρ2 which in solve for the unknowns ρ1
g1
G1

, ρ2
g2
G2

, ρ′1
G1

,

and ρ2
G2

. Once these unknowns are solved for, the rotation R can be obtained from the matrix

equation (4.2.18). The translation T is then solved from Equations 4.2.12 as

T = ρ1γ1 −RΓw
1 . (4.2.38)

¥

Proposition 4.2.2. The algebraic solutions to the systems (4.2.5) of Theorem 4.2.1 also require to

satisfy imaging and other requirements enforced by the following inequalities





ρ1 > 1, ρ2 > 1
g1
G1

> 0,
g2
G2

> 0

detR =
det

[
ρ1γ1 − ρ2γ2 ρ1

g1
G1

t1 + ρ′1
G1

γ1 ρ2
g2
G2

t2 + ρ′2
G2

γ2

]

det
[
Γw

1 − Γw
2 T w

1 T w
2

] = H.

(4.2.39)

(4.2.40)

(4.2.41)

2This is an 8th order or less polynomial.
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Proof. There are multiple solutions for ρ1 and ρ2 in Equation 4.2.37. Observe first that if ρ1, ρ2,

R, T are a solution, then so are −ρ1, −ρ2, −R, and −T , either by observing Equations 4.2.12

and 4.2.13. Only one of these two solutions are valid, however, as the camera geometry enforces

positive depth, ρ1 > 0 and ρ2 > 0, so that solutions are sought only in the top right quadrant of the

ρ1–ρ2 space. In fact, the imaging geometry further restricts the points to lie in front of the camera

so that ρ1 > 1 and ρ2 > 2.

Second, observe that the matrix R can be a rotation matrix if it has determinant +1 or a

reflection rotation matrix if it has determinant −1. This determinant can be computed for our

solutions from Equations 4.2.18,

detR =
det

[
ρ1γ1 − ρ2γ2 ρ1

g1
G1

t1 + ρ′1
G1

γ1 ρ2
g2
G2

t2 + ρ′2
G2

γ2

]

det
[
Γw

1 − Γw
2 T w

1 T w
2

] . (4.2.42)

Among the solutions for ρ1 and ρ2, we seek only those that give detR > 0. ¥

The parametrization we have assumed in the space curve projects T to the same half plane

as t in each view so that T and t need to point in the same direction, i.e., T · t > 0, or from

Equations 4.2.16 and 4.2.17, g1
G1

> 0 and g2
G2

> 0.

Remark: One can express 



T 1 = cos θ1
γ1

‖γ1‖
+ sin θ1t1

T 2 = cos θ2
γ2

‖γ2‖
+ sin θ2t2

(4.2.43)

in which case the 4th and 5th equations above are automatically satisfied leading to 4 equations in

4 unknowns ρ1, ρ2, θ1, θ2.




(ρ1γ1 − ρ2γ2)
>(ρ1γ1 − ρ2γ2) = ‖Γw

1 − Γw
2 ‖2

(ρ1γ1 − ρ2γ2)
>(cos θ1

γ1

‖γ1‖
+ sin θ1t1) = (Γw

1 − Γw
2 )>T w

1

(ρ1γ1 − ρ2γ2)
>(cos θ1

γ1

‖γ1‖
+ sin θ1t1) = (Γw

1 − Γw
2 )>T w

1

(4.2.44)

This replaces polynomial equations with a trigonometric set of equations.

Practical Approach to Computing a Solution: Equations 4.2.37 can be viewed as the inter-

section of two curves in the ρ1−ρ2 space. Since one of the curves to be intersected is an ellipse, it is

possible to parametrize this curve by a bracketed parameter and then look for intersections with the

curve of degree 8. This gives a higher order polynomial in a single unknown which is better than

solving simultaneously the two equations of degree 2 and 8.

Proposition 4.2.3. Solutions ρ1 and ρ2 to the quadratic Equation 4.2.20 can be parametrized as




ρ1 =
2αt cos θ + β(1− t2) sin θ

1 + t2

ρ2 =
−2αt sin θ + β(1− t2) cos θ

1 + t2
.

−1 ≤ t ≤ 1
(4.2.45)

(4.2.46)
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where

tan(2θ) =
γ>1 γ2

γ>1 γ1 − γ>2 γ2

, 0 ≤ 2θ ≤ π, (4.2.47)

α =
√

2‖Γw
1 − Γw

2 ‖√
(γ>1 γ1 + γ>2 γ2) + (γ>1 γ1 − γ>2 γ2) cos(2θ) + 2γ>1 γ2 sin(2θ)

, α > 0, (4.2.48)

β =
√

2‖Γw
1 − Γw

2 ‖√
(γ>1 γ1 + γ>2 γ2)− (γ>1 γ1 − γ>2 γ2) cos(2θ)− 2γ>1 γ2 sin(2θ)

, β > 0. (4.2.49)

Proof. An ellipse centered at the origin with semi-axes of lengths α > 0 and β > 0 and parallel to

the coordinates satisfies (x
α

)2

+
(
y

β

)2

= 1. (4.2.50)

observing that (2t)2 + (1− t2)2 = (1 + t2)2, the coordinates x and y can be parametrized as





x =
2t

1 + t2
α

y =
(1− t2)
1 + t2

β,

(4.2.51)

(4.2.52)

where t ∈ (−∞,∞), with ellipse vertices identified at −1, 0, 1 and ∞, as shown in Figure 4.9. For

a general ellipse centered at the origin, the coordinates must be multiplied with the rotation matrix

for angle θ, obtaining




ρ1 =
2αt cos θ + β(1− t2) sin θ

1 + t2

ρ2 =
−2αt sin θ + β(1− t2) cos θ

1 + t2
.

−1 ≤ t ≤ 1
(4.2.53)

(4.2.54)

Figure 4.9 illustrates this parametrization. Notice that the range of values of t which we need to

consider certainly lies in the interval [−1, 1] and in fact in a smaller interval where ρ1 > 0 and ρ2 > 0.

Note that for t and − 1
t correspond to opposite points on the ellipse.

The above parametrization is for a general ellipse centered at the origin with α, β, and θ specified.

The ellipse in Equation 4.2.20 is also centered at the origin. The parameters α, β, and θ for it can

be then found by substitution of ρ1 and ρ2 in the parametric form in Equation 4.2.20. Specifically,

writing

γ>1 γ1

(1 + t2)2
[4α2t2 cos2 θ + β2(1− t2)2 sin2 θ + 4αβt(1− t2) sin θ cos θ]+

− 2γ>1 γ2

(1 + t2)2
[−4α2t2 sin θ cos θ + 2αβt(1− t2) cos2 θ − 2αβt(1− t2) sin2 θ] + β2(1− t2)2 sin θ cos θ

−2γ>2 γ2

(1 + t2)2
[4α2t2 sin2 θ + β2(1− t2)2 cos2 θ − 4αβt(1− t2) sin θ cos θ] = ‖Γw

1 − Γw
2 ‖2.

(4.2.55)
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Figure 4.9: Diagram illustrating a parametrization of the ellipse by a parameter t.

Simplifying the equation as

[(γ>1 γ1)4α
2t2 − (γ>1 γ2)4αβt(1− t2) + (γ>2 γ2)β

2(1− t2)2] cos2 θ+

[(γ>1 γ1)β
2(1− t2)2 + (γ>1 γ2)4αβt(1− t2)(γ>2 γ2)4α

2t2] sin2 θ+

[(γ>1 γ1)4αβt(1− t2) + (γ>1 γ28α
2t2 − (γ>1 γ2)2β

2(1− t2)2 − (γ>2 γ2)4αβt(1− t2)] sin θ cos θ

= (1 + t2)2‖Γw
1 − Γw

2 ‖2
(4.2.56)

and using simple trigonometric identities cos2 θ = 1+cos(2θ)
2 and sin2 θ = 1−sin(2θ)

2 , cos2 θ − sin2 θ =

cos(2θ) and sin(2θ) = 2 sin θ cos θ, this equation can be better simplified to

[(γ>1 γ1)4α
2t2 − (γ>1 γ2)4αβt(1− t2) + (γ>2 γ2)β

2(1− t2)2](1 + cos(2θ))+

[(γ>1 γ1)β
2(1− t2)2 + (γ>1 γ2)4αβt(1− t2) + (γ>2 γ2)4α

2t2](1− cos(2θ))+

[(γ>1 γ1)4αβt(1− t2) + (γ>1 γ2)8α
2t2 − (γ>1 γ2)2β

2(1− t2)2 − (γ>2 γ2)4αβt(1− t2)] sin(2θ)

= 2(1 + t2)2‖Γw
1 − Γw

2 ‖2.

(4.2.57)

which is an equation only involving the unknown θ,

(γ>1 γ1 + γ>2 γ2)[4α
2t2 + β2(1− t2)]+

[(γ>1 γ1 − γ>2 γ2)[4α
2t2 − β2(1− t2)2]− (γ>1 γ2)8αβt(1− t2)] cos(2θ)

[(γ>1 γ1 − γ>2 γ2)4αβt(1− t2) + 2γ>1 γ2[4α
2t2 − β2(1− t2)2]] sin(2θ)

= 2(1 + t2)2‖Γw
1 − Γw

2 ‖2.

(4.2.58)

This equation holds for all values of t. t = 0,

(γ>1 γ1 + γ>2 γ2)β
2 − (γ>1 γ2 − γ>2 γ2)β

2 cos(2θ)− 2γ>1 γ2β
2 sin(2θ) = 2‖Γw

1 − Γw
2 ‖, (4.2.59)



97

giving

β2 =
2‖Γw

1 − Γw
2 ‖2

(γ>1 γ1 + γ>2 γ2)− (γ>1 γ1 − γ>2 γ2) cos(2θ)− 2γ>1 γ2 sin(2θ)
. (4.2.60)

Similarly, at t = 1,

(γ>1 γ1 + γ>2 γ2)4α
2 + (γ>1 γ1 − γ>2 γ2)4α

2 cos(2θ) + 2γ>1 γ24α
2 sin(2θ) = 8‖Γw

1 − Γw
2 ‖2, (4.2.61)

giving

α2 =
2‖Γw

1 − Γw
2 ‖2

(γ>1 γ1 + γ>2 γ2) + (γ>1 γ1 − γ>2 γ2) cos(2θ) + 2γ>1 γ2 sin(2θ)
. (4.2.62)

¥

Remark: Note that tan θ can be deduced from the value of T := tan(2θ) by

tan θ =





√
1 + T 2 − 1

T
if T > 0,

−√1 + T 2 − 1
T

if T < 0

(4.2.63)

The result of substituting the parametrization of the ellipse into the other equation Q = 0, on

clearing the denominators, appears to be an equation of degree 16 in t: The curve Q = 0 (degree 8)

and the conic (degree 2) will meet in at most 16 real points. Note that t and − 1
t give diametrically

opposite points on the ellipse, and the other curve Q = 0 is also symmetric with respect to the

origin. So the polynomial Q̃(t) which results from substituting for ρ1 and ρ2 in Q will be invariant

to this substitution, and hence have the form:

Q̃(t) = q0 + q1t+ q2t
2 + · · ·+ q16t

16, (4.2.64)

where qi = −q16−i for i odd. At most 8 solutions will lie in the range −1 < t ≤ 1, and indeed we

are only interested in solutions which make ρ1 > 0 and ρ2 > 0.

Further considerations From careful examination of the polynomial P we find that:

I) P is divisible by ρ4
1ρ

4
2. This is proved by multiple applications of the Hadamard lemma, namely

by verifying that the first, second, and third partial derivatives of P with respect to ρ1, when

substituting ρ1 = 0, are identically zero, and similarly with ρ2.

II) The residual polynomial

Q =
P

ρ4
1ρ

4
2

(4.2.65)

has total degree 8 in the variables ρ1 and ρ2.

III) Since the original equations are all invariant when the signs of ρ1, ρ2, x1, x2 are all reversed,

which leaves the signs of ρ1 and ρ2 unchanged, the polynomial P has this property too:

P (−ρ1,−ρ2) = P (ρ1, ρ2). (4.2.66)

The same is true of Equation 4.2.37.
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4.3 Calibrating Using Three Point-Tangent Correspondences

Across Three Views

The previous section concerns the case when two 3D point tangents (Γ1,T 1) and (Γ2,T 2) are

available, e.g., after reconstruction from two calibrated views, and addresses how these together with

corresponding image point tangents (γ1, t1) and (γ2, t2) can be used to estimate camera pose. In

general, when no calibrated views are available, however, the only information is the correspondence

among image point-tangents, written in the form of (γ, t) across several views. This case is the focus

of this section.

Table 4.10 shows the number of point correspondences needed in two, three, and four views,

with and without knowledge of intrinsic parameters, and, with and without knowledge of tangents

at each point. In the case of points without knowledge of tangents, correspondence of 7 points in

two views gives both pose and intrinsic parameters, although 8 points give the same though linear

equations. In three or four views, 6 point correspondences are required but 7 points allow for linear

equations. In four views, 6 points are required but these already give linear equations.

When the intrinsic parameters Kim are known, a general calculation due to Quan et. al. [129]

gives a formula for the number of points necessary: each image point γ gives two constraints, so that

P points in N views give 2NP equations. Each corresponding 3D point introduces 3 unknowns so

that P points give 3P unknowns. Each camera introduces 6 unknowns so that N views correspond to

6(N − 1) unknowns relative to the first camera, which can be taken as the world coordinate system.

An unknown needs to be subtracted because a scaling of the scene (all spatial distances, including

depths relative to the camera as well as camera distance) does not change the observations. Thus,

the set of observations are consistent with a one-parameter equivalence class of points and camera

defined changes in the “scene scale”, an unknown which cannot be recovered from observed data.

Therefore, the number of unknowns is reduced by one as only the equivalence class of solutions

can be obtained! Thus, the total number of unknowns is 3P + 6(N − 1) − 1. This implies that

the number of constraints must exceed the number of unknowns to have finitely many solutions

2NP ≥ 3P + 6N − 7, or

P ≥ 3 +
2

2N − 3
. (4.3.1)

For two views, N = 2, P ≥ 5, for three views N = 3, P ≥ 2 2
3 , for four views N = 4, P ≥ 3 2

5 , for

five views P ≥ 3 2
7 , etc. In other words, for three views or more at least four points are required, but

these four points cannot be arbitrary as the situation is overconstrained.

The situation for point-tangents is similar: each point provides 2 constraints in position and 1

constraint in tangents, so that there are 3NP equations. But now there are 2 additional unknowns

for each tangent in 3D, or 2P which in total gives 5P unknowns

3NP − 2P ≥ 3P + 6N − 7 (4.3.2)

or

P ≥ 2 +
3

2N − 5
. (4.3.3)
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Figure 4.10: Variants of the multiview camera geometry estimation problem.
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For N = 2 we have 5 points as before; for N = 3, P ≥ 2 3
4 , for N = 4, P ≥ 2 3

7 , for N = 5, P ≥ 2 3
10 , so

that for three views or more at least three points are required, and the equation is overconstrained.

The situation when points are endowed with both tangent and curvature is similar: points,

tangents, and curvature gives 4 constraints per view for 4NP total. The unknowns for each 3D

point is points (3), tangents (2), normals (1), and curvature (1), for a total of 7 per point, or 7P ,

(N − 2)P equations for curvatures, requiring

4NP ≥ 4P + 6N − 7, (4.3.4)

or

P ≥ 6N − 7
4N − 7

. (4.3.5)

For N = 2, P ≥ 5, for N = 3, P ≥ 21
5 , for N = 4, P ≥ 18

9 , for N = 5, P ≥ 1 10
13 , etc. Thus, for three

views 3 points are required, but for five views only two points are required!.

When points are endowed with curvature derivative, there is an additional constraint per point

per view, i.e., 5NP . This introduces two additional 3D unknowns, i.e., torsion and curvature

derivative, for 9P unknowns, requiring 5NP ≥ 9P + 6N − 7 or

P ≥ 6N − 7
5N − 9

. (4.3.6)

For N = 2, P ≥ 5, for N = 3, P ≥ 15
6 , for N = 4, P ≥ 1 6

11 , etc., thus requiring only two points in

three views.

Assume that three correspondences are given across three views, i.e., that the point-tangents

(γ1
1, t

1
1), (γ1

2, t
1
2), (γ1

3, t
1
3) in the first view correspond to the three point-tangents (γ2

1, t
2
1), (γ2

2, t
2
2),

(γ2
3, t

2
3) in the second view, respectively and to the three points (γ3

1, t
3
1), (γ3

2, t
3
2), (γ3

3, t
3
3) in the

third view, respectively, and to the unknown 3D point-tangents (Γw
1 ,T

w
1 ), (Γw

2 ,T
w
2 ), and (Γw

3 ,T
w
3 ),

in space, respectively. Assume further that intrinsic parameters K1
im, K2

im, and K3
im are given for all

cameras. Our goal is to find the relative pose of cameras with respect to the world using (R1, T1),

(R2, T2), (R3, T3) 



Γ1 = R1Γw + T1

Γ2 = R2Γw + T2

Γ3 = R3Γw + T3

(4.3.7)

as well as relative pose among cameras (R21, T21), (R31, T31), (R32, T32)





Γ2 = R21Γ1 + T21

Γ3 = R31Γ1 + T31

Γ3 = R32Γ2 + T32

(4.3.8)

Note that

Γ2 = R21(R1Γw + T1) + T21 = R21R1Γw +R21T1 + T21, (4.3.9)
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Figure 4.11: Intrinsic coordinate system is in brown, while the view coordinate system is
in green.

so that R2 = R21R1 and T2 = R21T1 + T21 and




R21 = R2R>1
R31 = R3R>1
R32 = R3R>2





T21 = −R21T1 + T2

T31 = −R31T1 + T3

T32 = −R32T2 + T3.

(4.3.10)

We also have 



Γ1
1 = ρ1

1γ
1
1

Γ1
2 = ρ1

3γ
1
2

Γ1
3 = ρ1

3γ
1
3





Γ2
1 = ρ2

1γ
2
1

Γ2
2 = ρ2

3γ
2
2

Γ2
3 = ρ2

3γ
2
3





Γ3
1 = ρ3

1γ
3
1

Γ3
2 = ρ3

3γ
3
2

Γ3
3 = ρ3

3γ
3
3.

(4.3.11)

Intuitively, assuming that (R12, T12) is known, the 3D point-tangents (Γ1,T 1), (Γ2,T 2), (Γ3,T 3)

can be reconstructed from views 1 and 2. Then, applying Problem 1 to a pair of these, say (Γ1,T 1)

and (Γ2,T 2) and the corresponding (γ3
1, t

3
1) and (γ3

2, t
3
2) in the third view, we can determine (R3, T3).

Repeating this with a different pair, say (Γ1,T 1) and (Γ3,T 3) gives a different estimate for (R3, T3).

Equating these six equations should give R, T . This reconstruction is then used in determining

(R3, T3).

Alternatively, the three unknown (ρ1
1, ρ

1
2, ρ

1
3) from the first view, Figure 4.11, determine (Γ1,Γ2,Γ3),

and the three unknowns (ρ′1, ρ
′
2, ρ

′
3) determine the tangents (T 1,T 2,T 3). These six unknowns, like

the six unknowns in (R, T ) above can be constrained and solved. Both these options, however,

favor one view as special and are not symmetric, and also involve difficult nonlinear rotations and

projections. Instead, we choose a more geometric set of unknowns. Specifically, let the lengths of
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Figure 4.12:

the triangle connecting Γ1, Γ2, and Γ3 be





L12 = ‖Γ1 − Γ2‖
L23 = ‖Γ2 − Γ3‖
L31 = ‖Γ3 − Γ1‖,

(4.3.12)

as shown in Figure 4.11. For the tangents we use the two angles T 1, T 2, and T 3 make with the

sides T 1 with Γ1Γ2 and Γ1Γ3, θ12, θ13, respectively, and T 3 with Γ31, Γ32, θ31, θ32, respectively.

The conjecture is that these geometric quantities are symmetric with respect to views and involve

simple relations.

First, consider that the intra distance of the three non-collinear points Γ1, Γ2, and Γ3 are given

as L12, L23, L31 as in Equation 4.3.12, but not the coordinates of Γ1, Γ2, and Γ3. Then we can set

a local coordinate system where Γ1 is the origin, Γ1Γ2 defines the first axis, Γ1Γ2 × Γ1Γ3 defines

the third axis, and Γ1Γ2 × (Γ1Γ2 × Γ1Γ3) defines the second axis. We can now use the following

proposition to find R and T .

We take L12, α1, and α2 to fully describe the geometry of the triangle, modulo a rigid transfor-

mation. Then 



Γw
1 = (0, 0, 0)>

Γw
2 = (L12, 0, 0)>

Γw
3 = (L13 cosα,L13 sinα, 0)>,

(4.3.13)

where L13 can be obtained from solving




tanα1 =
H

x

tanα2 =
H

L12 − x

=⇒ tanα1

tanα2
=
L12 − x

x
=⇒ tanα1

tanα2
+ 1 =

L12

x
(4.3.14)

giving

x =
L12

tan α1
tan α2

+ 1
(4.3.15)



103

so that 



L31 =
x

cosα1
=

L12

cosα1

(
tan α1
tan α2

+ 1
)

L23 =
L12 − x

cosα2
=

tan α1
tan α2

L12

cosα2

(
tan α1
tan α2

+ 1
)

(4.3.16)

The angle α3 = π − (α1 + α2).

Proposition 4.3.1. Suppose three non-collinear points {Γ1,Γ2,Γ3} in the camera coordinate system

have world coordinate representation {Γw
1 ,Γ

w
2 ,Γ

w
3 }. Then the two coordinate systems are related by

Γ = RΓw + T , (4.3.17)

where

R =
[
Γ2 − Γ1 Γ3 − Γ1 (Γ2 − Γ1)× (Γ3 − Γ1)

] [
Γw

2 − Γw
1 Γw

3 − Γw
1 (Γw

2 − Γw
1 )× (Γw

3 − Γw
1 )

]−1

(4.3.18)

and T = Γ1−RΓw
1 . In other words, three corresponding pairs of points fully determine camera pose.

Proof. The translation is easily eliminated from the system of equations




Γ1 = RΓw
1 + T

Γ2 = RΓw
2 + T

Γ3 = RΓw
3 + T

(4.3.19)

by pairwise subtraction giving 



Γ1 − Γ2 = R(Γw
1 − Γw

2 )

Γ1 − Γ3 = R(Γw
1 − Γw

3 ).
(4.3.20)

Observe that the vector (Γ1−Γ2)× (Γ1−Γ3) cannot be written as a linear sum of Γ1−Γ2 and

Γ1 − Γ3. We have obtained by observing that

(Γ1 − Γ3)× (Γ2 − Γ3) = R[(Γw
1 − Γw

2 )× (Γw
1 − Γw

3 )] (4.3.21)

so that the matrix formed from the three vectors Γ1 − Γ3,Γ2 − Γ3 and (Γ1 − Γ3)× (Γ2 − Γ3) is R
times that in the world coordinates,
[
Γ1 − Γ2 Γ1 − Γ3 (Γ1 − Γ2)× (Γ1 − Γ3)

]
= R

[
Γw

1 − Γw
2 Γw

1 − Γw
3 (Γw

1 − Γw
2 )× (Γw

1 − Γw
3 )

]
,

(4.3.22)

and this matrix equation can be solved to find R. T can be found from the first equation in (4.3.19).

¥

Corollary 4.3.2. In the case when Γw>
1 = (0, 0, 0), Γw>

2 = (L12, 0, 0), and Γw>
3 = (L13 cosα1, L13 sinα1, 0)

we have

(Γw
2 − Γw

1 ) = (L12, 0, 0) (4.3.23)

(Γw
3 − Γw

1 ) = (L13 cosα1, L13 sinα1, 0) (4.3.24)
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and

(Γw
2 − Γw

1 )× (Γw
3 − Γw

1 ) = (0, 0, L13L12 sinα1)>, (4.3.25)

so that

[
Γw

2 − Γw
1 Γw

3 − Γw
1 (Γw

2 − Γw
1 )× (Γw

3 − Γw
1 )

]
=



L12 L13 cosα1 0

0 L13 sinα1 0

0 0 L13L12 sinα1


 (4.3.26)

which from Equation 4.3.22 gives

R =
[
Γ1 − Γ3 Γ2 − Γ3 (Γ1 − Γ3)× (Γ2 − Γ3)

]



1
L12

−1
L12

cos α1
sin α1

0

0 1
L13

1
sin α1

0

0 0 1
L13L12

1
sin α1


 (4.3.27)

or

R =
[
nρ1γ1 − ρ3γ3 ρ2γ2 − ρ3γ3 ρ1ρ2γ1 × γ2 − ρ1ρ3γ1 × γ3 − ρ2

3γ3 × γ2

]



1
L12

−1
L12

cos α1
sin α1

0

0 1
L13

1
sin α1

0

0 0 1
L13L12

1
sin α1




(4.3.28)

4.4 Future Directions

The short-term research direction would be to develop a more explicit numerical scheme for im-

plementing Theorem 4.2.1. The ellipse could be parametrized by rational functions in terms of a

parameter in the [−1, 1] range, and we could find roots of the resulting single-variable polynomial

in this finite interval.

We have also been working on the problem of determining trinocular relative pose from corre-

sponding point-tangents across 3 views. This would allow for complete curve-based structure from

motion systems starting from a set of images without any initial calibration. These systems would

start by building an initial solution for 3 views, refine the solution using bundle adjustment, then

use our Theorem 4.2.1 to add new views to the system one by one.



Chapter 5

3D Curve Sketch: Curve-Based

Stereo Reconstruction and

Calibration

5.1 Introduction

The 3D reconstruction of scenes from images taken from multiple cameras and the calibration of

these cameras are fundamental problems in Computer Vision. The state-of-the-art approaches to

these problems either find correspondences among isolated interest points which give a 3D point

cloud reconstruction of the scene, or are intensity-based multiview stereo methods, which give de-

tailed mesh reconstructions of simple objects but use controlled acquisition. These approaches have

been successful for select domains of application, resulting in autocalibration and useful 3D recon-

structions. However, their requirements/assumptions are not applicable in general, motivating a

novel approach based on image curve content to complement existing approaches.

The application of interest-point-based methods have been successful in scenes with texture-

rich images, such as in Phototourism [1,125]. Despite their success, these methods are not applicable

in general settings. First, they assume an abundance of interest points per independently moving

object, possibly only with a fair degree of texture in projected images. Such a rich texture is not

always available in scenes with homogeneous regions, e.g., some man-made environments, or when

objects project to a small number of pixels, relative to the basis of computation of interest points.

In these cases, there may be sufficient image curve geometry, however, to reconstruct the scene and

recover the cameras.

Second, the stability of interest points is significantly reduced as the baseline exceeds 30◦ [113],

so these methods are fundamentally restricted to a limited range of baselines. In contrast, certain

curve features, such as sharp ridges on a building, persist over a much greater range of views. Third,

105
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Figure 5.1: The 3D reconstuction as a 3D curve sketch (left) gives explicit geometry in
contrast to the 3D cloud of point reconstruction (right). In essence, the proposed method
produces a cloud of 3D curve fragments.

reconstruction using interest points results in an unorganized cloud of 3D points where the geometric

structure of the underlying curves and surfaces is not explicit. This is not much of a problem if the

focus is on calibrating the viewpoints as in Phototourism [1]. However, when the 3D object geometry

is required, such as in modeling for architecture, archaeology, entertainement, object recognition,

and robotic manipulation, it would be useful to augment the output with an explicit geometric

structure such as a 3D curve sketch.

The second category of 3D reconstruction techniques, multi-view stereo methods, produce

detailed 3D reconstructions of objects imaged under controlled conditions by a large number of

precisely calibrated cameras [56, 61, 64, 74] (see [134] for a review). However, they cannot handle

general scenes, since most approaches are specific to a single object or to a specific type of object, such

as buildings. In addition, they often require accurate camera calibration, operate under controlled

acquisition, and are often initialized by the visual hull of the object or a bounded 3D voxel volume.

The goal of this work is to augment current multiview reconstruction and calibration technology

by developing a generally applicable framework based on image curves when a large number of

views are available, e.g., a video sequence.

Two fundamental obstacles must be surmounted before image curve fragments can be used in

3D reconstruction and camera calibration. First, given a pair of image curve fragments, each from a

different view, there is an ambiguity in intra-curve correspondence, i.e., given a point on one curve,

it is not clear which point on the other curve it corresponds to, Figure 5.2(a). This is in contrast

to matching two isolated feature points which have no inherent within-pair ambiguity. Second, the

linking of edges into curve fragments is not stable across views, even for slight baseline differences,

Figure 5.2(b), resulting in multiple transitions as the view changes [79].
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Figure 5.2: Challenges in using curve fragments in multiview geometry: (a) point cor-
respondence ambiguity along the curve, (b) instabilities with slight changes in viewpoint,
(c-h) real examples of edge grouping instabilities, such as a curve in one being broken into
two in another view, a curve being linked onto background, a curve being detected in one
view but absent in another, a curve being fragmented into various pieces at junctions in one
view but fully linked in another view, different parts of a curve being occluded in different
views, and a curve undergoing shape deformation from one view to the other.
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Previous curve-based methods have circumvented problems in various ways. First, the use of

general but closed curves resolves the curve transition issue [13, 126], but requires the successful

segmentation of images which is unlikely. Second, the use of algebraic curves resolves the transi-

tion issue with low-order models based on extrinsic polynomial equations such as conics [33, 85],

quadrics [130,162], and higher order algebraic curves [86]. However, algebraic curve geometry is re-

strictive, limiting their application to general scenery. Third, silhouettes and visual hulls have been

successfully used in several aproaches [14,32,57,73,74,98], but require a highly controlled acquisition

for their extraction, and work only for one object per scene. Fourth, straight lines are a simple,

compact and distinctive geometric representation to be used in generating model hypotheses and

detecting objects for man-made environments [38]. However, this approach severely restricts the

application domain by not allowing for curved structures. Finally, current multiview methods based

on general curves require highly accurate calibration, which is not easily available in general.

Overview of our approach: Figure 5.3 illustrates our approach. We assume a large number

of views are available, in practice N ≥ 6 (although 3 views would be the theoretical minimum),

e.g., from video or from multiple cameras monitoring a scene. We also assume that the cameras

have been coarsely calibrated, typically with 2 − 5 pixel error. The goal is to use the collection of

image curves in these views to produce a dense collection of unorganized 3D curve fragments, or

the 3D curve sketch, which reflect the underlying geometry arising from a combination of 3D sur-

face geometry and viewing/illumination arrangements, i.e., occluding contours, reflectance contours

(albedo discontinuity), shadow curves, shade curves, ridges, etc. We also use this reconstruction

to refine the cameras so that a better and denser 3D curve sketch can be obtained, and so that a

better distinction can be made between occluding contours and view-stationary contours such as

reflectance curves and ridges.

Our approach is divided into two stages. In the first stage, where cameras are calibrated coarsely,

the goal is to reconstruct a partial, but reliable core 3D curve sketch to be used in the second

stage for refining calibration and for obtaining a more complete 3D curve sketch. Specifically, pairs

of long curve fragments, each from a different view, with sufficient epipolar overlap form a 3D curve

fragment hypothesis. For each such pair, the two views from which a curve pair hypothesis is formed

are referred to as the hypothesis views. The hypothesis views refer to the views relative to that

particular hypothesis or set of hypotheses. Any two views from the set of available views usually

participate as hypothesis views for some curve pair hypothesis. Each curve pair hypothesis is then

reprojected onto a set of other views, the confirmation views, and rated for consistency with the

image and curve differential geometry. Those hypotheses with sufficient evidence in confirmation

views are then reconstructed to form the initial core 3D curve sketch, as discussed in Section 5.2.

The core 3D curve sketch enables a curve-based measurement of calibration accuracy, i.e., by

summing up the distances between reprojected curves and supporting image curves. This allows

for a refinement of cameras through bundle adjustment, resulting in subpixel calibration errors.

The refined cameras in turn allow for additional sensitivity so that smaller curve fragment pair

hypotheses can be confirmed or discarded. This is discussed in Section 5.3. Section 5.4 discusses the
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Figure 5.3: A schematic overview of our approach: The input to our system is (i) a set of
N images taken of the scene where N is at least 6 but typically larger, and (ii) a set of N
coarsely calibrated camera models, one for each view: the system pairs a curve fragment
from an “anchor view” with one from another view, “hypothesis views”, to form a curve pair
correspondence hypothesis which is verified or discarded based on the edge map of other
views, “confirmation views”. Once a set of reliable curve fragment hypotheses are formed,
curve-based bundle adjustment is used to refine the cameras and the process is repeated.
The output of our system is a set of 3D curve fragments (the 3D curve sketch) and refined
cameras.

details of our implementation and Section 5.5 evaluates the approach on several datasets. Figure 5.1

highlights the results.

A critical distinction in reconstructing image curves is whether they arise from view-stationary

or view-nonstationary sources. A view-stationary image curve is one arising from the same space

curve regardless of the view.

In practice, except for low-curvature surfaces, the set of occluding contours cluster in 3D, ap-

proximating a single 3D curve. In the first stage of our reconstruction where the calibration errors

are high, view-stationary and some view-nonstationary curves are considered together, but they are

differentiated in the second stage up to the accuracy of the refined calibration.

(a) (b)

Figure 5.4: A putatively corresponding set of image curve fragments can arise from a single 3D
curve.

Additional Bibliography: The present work on the 3D curve sketch lies at the intersection
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of different areas of Computer Vision and proposes a new approach, while discussing the merits

and drawbacks of numerous existing alternatives. As such, there is a number of previous work to

be mentioned. Somewhat related work include Gang Li and Steve Zucker’s work on curves and

diffferential geometry [2,94,164], together with Brint and Brady’s binocular curve matching system

using heuristic shape similarity constraints [17]. These systems, however, don’t use a large number

of views nor work under the flexible settings of uncontrolled acquisition with coarsely calibrated

views. Older papers that can be related to our approach are [3, 7, 8]. Our approach can be thought

of as an automated version of the curve-based CAD system from [159].

The insight behind the robustnes of our support function (described in Section 5.2), that of

integrating the number of inliers, can be remotely traced back to the generic robust model fitting

approach of ransac [54] that has been the core of many successful approaches to computer vision,

such as automatic structure from motion. The idea, coupled with differential-geometric constraints,

allows our matching method to be extremely robust to missing edgels and to outliers.

It may also be worthwhile mentioning that our approach is still within the tradition of using

features for structure and motion [145], and bears most of their advantages and motivation; the

novelty lies in bringing the richer curve fragments to practice, instead of corners or sift features.

Additional citations include [10,23].

5.2 Curve-based Multiview Stereo

The approach presented here is based on reasoning with image curve fragments obtained from a large

number of views. We denote image curve fragments by γv
i , where v indexes into views, v = 1, . . . , N ,

and i enumerates the image curves within each view v, i = 1, . . . ,Mv. The goal is to produce a set of

3D stationary curve fragments {Γ1,Γ2, . . . ,ΓK}, supported by sufficient evidence from the multitude

of images. Several observations are important. First, a given 3D curve fragment Γk may not project

to all views due to occlusion or due to limited field of view. Thus, evidence for Γk cannot be expected

in all views. Second, in views where Γk is visible it may only be partially visible, or if fully visible,

there may not be sufficient image evidence to produce image curves. Thus, the projected image curve

corresponding to Γk may be partially visible or it may be broken into segments. Furthermore, the

partitioning of the ideally projected curve into segments can differ substantially from view to view,

Figure 5.2(b). Third, even if Γk is fully visible as a whole image curve fragment in each view, the

intra-curve correspondence between two projected image curves is not clear, Figure 5.2(a). While

the above problems are generally expected from some image curve projections of a space curve,

there is typically at least a few views where there is partial correspondence.

Assumption 5.2.1. For each stationary 3D curve fragment there exist at least two views v1 and v2
for which a substational subsegment of the 3D curve fragment Γk projects onto portions of extracted

image curve fragments γv1
i1

, γv2
i2

, Figure 5.5(a).

Since a point in one view can correspond to a point in another view only if they each lie on

corresponding epipolar lines, and since an image curve segment is an ordered collection of points,
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(a) (b)

Figure 5.5: (a) Each space curve, or at least a significant subsegment of it, is expected
to have corresponding image curve subsegments in at least two views. (b) An “epipolar
band” for a curve segment is the set of epipolar lines going through points of that curve
segment. The epipolar band of image curve γv1

i1
(green and yellow) delineates potential

image curve matches by requiring some overlap in this region, allowing for γv2
i1

and γv2
i3

but
not γv2

i4
. Conversely, the epipolar band of γv2

i2
(green and blue) selects γv1

i1
, and others.

The correspondence between γv1
i1

and γv2
i2

is restricted to the subsegments a1b1 and a2b2,
respectively, i.e., the common (green) epipolar band, required to exceed a minimal epipolar
overlap (τe = 5 pixels).

a curve segment in one view corresponds to a curve segment in another view if they lie on a corre-

sponding set of epipolar lines, which can be referred to as an epipolar band, e.g., the green region

in Figure 5.5(b). The common portions of such pairs of curves are potential candidates for having

arisen from a single common 3D curve fragment.

Definition 1. Two image curve fragments γv1
i1

and γv2
i2

with portions lying on a common epipo-

lar band, γ̄v1
i1

, γ̄v2
i2

, respectively, form a curve fragment hypothesis whose reconstruction Γk

represents a potentially valid 3D curve hypothesis.

It is clear that not all curve fragment pair hypotheses are valid. In fact, the ratio of valid

hypotheses to spurious ones is roughly on the order of the number of image curve fragments sharing

an epipolar band with each given curve, typically ranging from ten in sparse scenes to dozens or

hundreds in more complex scenes. This ambiguity can be resolved by confirmation of hypotheses in

other views, comparing the projection of Γk onto another view v, namely γ̃k,v, by consulting image

evidence. While it may seem natural to demand the presence of an image curve γv
i that closely

resembles γ̃k,v, this is not a realistic expectation due to instabilities in the edge linking process,

Figure 5.6.

Alternatively, the edge map itself can be interrogated, to avoid exposure to the frailty of the edge

linking process, as is done in object recognition strategies [119,139,149] in curve tracking [79], and in

satellite sensor registration [124]. However, an edge without proper local context supports numerous

potential curve hypotheses. As such, in the presence of clutter and texture where numerous edges

arise, multiple incorrect hypotheses receive sufficient support. Thus, an edge without additional
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Figure 5.6: Real examples of how instabilities in the edge linking process make it difficult
to evaluate the support of a reprojected curve (light blue) using curve fragments (random
colors).

local support cannot reduce ambiguity and is not significantly selective.

The natural compromise between long image curves, which are inherently unstable and un-

reliable, and short edge elements, which are easy to compute but are inherently not sufficiently

selective of curve hypotheses, is to use short curve segments. The advantage is that short curve

segments are relatively more stable with variations and have sufficient local context to be selective.

Their drawback is that many expected short curve segments may not be produced due to incorrect

grouping.

The above dilemma can be resolved by considering all possible reasonable local groupings of edges

into small curve segments. The use of multiple curve segments hypotheses passing through each edge

introduces clutter, but the use of other views ensures that erroneous groupings are not validated

towards this end. This avoids missing out on groupings due to poor edge linkers while dealing

effectively with clutter. Specifically, Tamrakar and Kimia [144] developed a geometric validation

scheme to retrieve all feasible local groupings of edges in a small neighborhood, say 7 × 7. They

show that a single edge hypothesizes a vast space of curves, while a pair of edges hypthesize a

reduced space, a triplet of edges represent a more restricted set of curves, etc., Figure 5.7. Such a

combinatorial analysis is feasible and results in a limited set of “discrete curvelets” for each edge. It

is this discrete curvelet that is the natural compromise between unstable long curves and context-less

local edges, Figure 5.8. Figure 5.9 shows the reprojection of a 3D curve hypothesis onto the set of

possible curvelets at one point.

The image support for a given reprojected curve γ̃k,v is therefore based on summing the support

of edges which sufficiently support this hypothesis. An edge supports a projected curve only if there

exists a discrete curvelet sufficiently supporting it. This means that each edge must be sufficiently

close and be of the right orientation. Specifically,

Definition 2. (Weakly supporting edge) An edge at point p0 with tangent t0 of an edge map M
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Figure 5.7: A single edge hypothesizes a vast space of curves, while a pair of edges hypthesize
a reduced space, a triplet of edges represent a more restricted set of curves, etc.

(a) (b)

(c)

Figure 5.8: An example of curvelets detected in a real image (a side window of the Capitol
building depicted in Figure 5.2): (a) The original edges; (b) all the curvelets representing
local groupings in a 5×5 neighborhood, and (c) all the curvelets representing local groupings
in a 7× 7 neighborhood.
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Figure 5.9: Among the discrete curvelets (red and light green) at an edge point (yellow
with magenta dot), only one (green) matches the reprojected curve γu,v (light blue). The
remaining edges in the edge map are shown in darker blue.

Figure 5.10: We avoid multiple intersections with epipolar lines by breaking curve fragments
at epipolar tangencies.
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(a) (b)

Figure 5.11: The instability of the edge linking process can be altogether avoided if we use
edges, as done in recent object recognition strategies, e.g., oriented chamfer distance [119,139,149].
However, reprojected contours (blue) can at times get significant support from cluttered or textured
areas (a). This motivates the exclusive use of edges for which there exists a local grouping consistent
with the reprojected curve (b). Two of the edges with a magenta dot in (b) support the reprojected
curve with a curve model (green) while two others do not (red).

supports an an image curve point γ(s) with tangent t(s) when:





p0 = argmin
p∈M

d(p,γ(s))

d(p0,γ(s)) < τd

](t0, t(s)) < τθ,

(5.2.1)

(5.2.2)

(5.2.3)

where d(p,γ(s)) is the Euclidean distance between a point p and the curve point γ(s).

This is a minimum requirement, however. It is additionally expected that the curve is supported

for at least one discrete curvelet going through that edge. Specifically, an edge is supportive of a

reprojected curve if it is close to it and of the right orientation, and there is a local grouping where

the majority of the edges are weakly supporting.

Definition 3. (Strongly supporting edge) An edge strongly supports a curve if (a) it is a weakly

supportive edge and (b) it participates in a discrete curvelet where τs percent (typically 70%) of the

edges are weakly supporting edges.

The use of tangent orientation is significant since a reprojected curve on clutter would otherwise

receive high support. This is confirmed by our experiments since performance drops when τθ is

increased. The total support for a reprojected curve is the sum of support from all supporting

edges.
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Let the number of strongly supporting edges of a curve point γ(s) in view v be denoted φ(γ(s)).

Then, the total support S a hypothesis wk has from view v is

Sv(wk) =
∫ Lv

k

s=0

φ(γk,v(s))ds, (5.2.4)

where Lv
k is the length of γk,v. A view is considered a supporting view when support for a view v

that a curve is above τv.

Considering the potential for occlusion, failure of edge linking, etc, evidence is solicited from

more than one confirmation view for each curve fragment pair hypotheses by summing support over

supporting views

S(wk) =
N∑

v 6=v1,v2

[Sv(wk) > τv]Sv(wk). (5.2.5)

A space curve hypothesis Γk is considered validated if the extent of this support exceeds threshold

τt.

A two-stage process. The process first considers reliable curves, which reduces ambiguity, and

then in a second stage, after a calibration refinement, considers a larger set of curves to produce a

denser 3D curve sketch.

In the first stage, only sufficiently long curve fragments (typically of length l > τl = 40 pixels

for HD video) are considered, since they are reliable indicators of image structure. The goal in

the initial stage is to produce a core set of reliable curves Γk which can be used to bootstrap a

better calibration. Since long curves typically undergo a wide range of transitions with view changes,

only a minimal but sufficient epipolar overlap (τe = 5 pixels) is required. Once better calibration

is available, the length condition is relaxed for the subsequent stages thus producing a richer 3D

curve sketch. Multiple curve intersections are handled by breaking all curve fragments at epipolar

tangencies, Figure 5.10, and keeping the ones with length greater than τl. The result is a set of

curve fragment pair hypotheses W = {wk, k = 1, . . . ,K} collected from pairs of hypothesis views,

Figure 5.14.1

The set of curve fragment pair hypotheses W is now thresholded for extent of support τt.

However, observe that an image curve fragment γ1
1 may pair with more than one curve fragment

in view 2, due to epipolar ambiguity, e.g., (γ1
1,γ

2
1) and (γ1

1,γ
2
2) may be both possible hypotheses,

exceeding a threshold of support, but both cannot simultaneously be valid. Thus, we use a greedy

assignment to resolve conflicts: the curve fragment pair hypotheses are rank-ordered and iteratively

the highest-ranking hypothesis removes all conflicting lower-ranking hypotheses.

A ratio parameter τr is used in our system to prune out unreliable matches. The insight is that

we discard a curve fragment match hypothesis if the second best match to a given curve γ1 has

support s2 close to the support s1 of the best match, that is:

τr · s2 > s1 (condition for ambiguous match). (5.2.6)
1Robert and Faugeras [131] (and later Schmid and Zisserman [133] using the Trifocal tensor) also use
differential geometry in a trinocular setting, but these systems require extremely well-calibrated cameras,
are restricted to 3 views, and employ additional heuristic constraints.
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Figure 5.12: The reprojection of a curve fragment pair γv1
i1

, γv2
i2

onto a third view (shown
in blue) can enjoy the support of an existing curve fragment γv

i (red) as in (a). However,
much more typically, due to the instability of the edge linking process, it is more likely
to expect support from several pieces of curve fragments as in (b), with missing segments.
This instability motivates the use of a small neighborhood of an edge – not entire curve
fragments – in the confirmation process.

This is similar to the criterion used to discard unreliable sift correspondences in point-based struc-

ture from motion. We use it to overcome the repeated structures problem without having to use a

large number of confirmation views Nc.

It should be emphasized that while this process may lead to numerous false negatives in forming

curve fragment pair hypotheses (especially in the first stage when the threshold of support is higher

for reliability i.e., a curve fragment in one view may break up differently in a second view), this is

not a major concern because the set of corresponding curve fragments {γ1
i1
,γ2

i2
, . . . ,γn

in
} need only

be represented by one curve fragment pair. Thus, if a veridical curve fragment pair is not selected

in hypothesis views 1 and 2, it is likely to be selected in another pair of hypotheses. In fact, the

confirmed curve fragment pair hypotheses induces a grouping on the remaining views. This notion of

interacting 3D curve reconstruction and edge linking is actually a significant departure from purely

bottom-up edge linking approaches, but its development is beyond the scope of this thesis.

View Selection. While ideally the set of curve fragment pair hypotheses W should be formed from

all pairs of hypothesis views and tested on all the remaining ones, this is not practical when the

number of views is in tens or hundreds, as in a video sequence, thus motivating a view selection

strategy. On the one hand, the reliability of reprojection onto a third view is directly related to

how close the two views are: reprojections from two views with a small baseline are not stable.

On the other hand, pairs of views with a large baseline may not have many image curves with a

common source due to occlusion. Our experiments with real data indicate that a baseline of 40◦

leads to stability comparable to calibration accuracy. Beyond this value of baseline, the number

of hypothesis views is only constrained by the extent of computations that can be afforded. We

select pairs of consecutive views b = 40◦ apart as hypothesis views. An identical strategy holds

for selecting confirmation views. The only difference is that in the confirmation process visibility is

more of an issue than reconstruction stability. Thus, the selection follows a smaller baseline bc = 1
3b,

in the vicinity of the hypothesis views but excluding the selected hypothesis views.
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5.3 Camera Calibration Refinement

The goal of this section is that given the core 3D curve sketch {Γ1, . . . ,Γk} obtained after the first

stage, to refine the calibration by minimizing reprojection error.

Let the camera parameters for each view be Pi = Ki [Ri | Ti], i = 1, . . . , N , where Ki , Ri and

Ti are the intrinsic parameter matrix, the rotation matrix and the translation vector, respectively.

Let the set of validated curve fragment pair hypotheses W underlying the core 3D curve sketch be

W = {wk = (γv1
i1
,γv2

i2
), k = 1, . . . ,K}. (5.3.1)

These hypothesesW together with camera parameters for all views P = (P1, P2, . . . , PN ) reconstruct

the 3D curve sketch {Γ1,Γ2, . . . ,ΓK}. Assuming the set of curve pair correspondences W is correct,

the curve-based reprojection error, i.e., the degree the reprojected Γk, γk,v agrees with its edge

evidence in that view Mv defines the quality of the calibration. Formally, define the reprojection

error of a 3D curve fragment Γk arising from views v1 and v2 as

fk,M(P) =
N∑

v=1
v/∈{v1,v2}

∫ Lu

0

d(γk,v,Mv)ds, (5.3.2)

where d(γk,v
0 (s),Mv) is the distance between the point γu,v

0 (s) and the line containing the closest

oriented edge point in Mv. Note that the closest edge point must satisfy the distance and orientation

thresholds, τd and τθ, as in equations (2) and (3) respectively; oriented distance takes into account

both distance and orientation and is defined as total reprojection error from the reliable, core 3D

curve sketch as

fW,M(P) =
K∑

k=1

fk,M(P). (5.3.3)

We then seek cameras that minimize the error

P̂ = argmin
P

fW(P), (5.3.4)

The independence of curve projections from each other and the limited visibility of a curve across

views implies a sparsity that allows for a successful implementation of the optimization using

Levenberg-Marquardt as used in the traditional bundle adjustment. The total calibration error

is reduced to subpixel accuracy, as illustrated in Figure 5.13.

5.4 Implementation

Edge and curve fragment detection: The integration of curve content over many views when

clutter is present relies heavily on the orientation of curve tangents in addition to curve position.

Thus, the edge detector used must yield very reliable orientation estimates. We use the subpixel edge

map produced by a third-order operator [144], which explicitly addresses the orientation reliability,
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(a) (b)

Figure 5.13: Example of a projected curve γk,v(red) on edge map Mv(blue) before calibra-
tion refinement (a) and after (b).

and their symbolic edge linker which addresses the grouping of edges into curve fragments. Examples

are shown in Figure 5.14.

Initial calibration. Initial calibration is obtained using traditional automatic structure from mo-

tion techniques [1,125], or if that fails, by manually specifying corresponding points and solving for

the cameras. The initial calibration is typically imprecise (1-6 pixels reprojection error), which we

call “coarse” calibration. We assume intrinsic parameters to be precisely known, with the impreci-

sion residing on the extrinsic parameters. We are also in the process of developing a curve-based

autocalibration system to augment point-based autocalibration using the ideas presented here.

Epipolar line intersection. The breakup of curve fragments at points of epipolar tangency implies

that each segment can be parametrized by epipolar angle, i.e., the angle of the epipolar line at each

curve sample with the x axis. This allows for a rapid test of whether an epipolar line intersects a

curve by simply looking up the two curve boundary epipolar angles. Such an operation is necessary

for determining epipolar candidates/epipolar overlap, and for 3D reconstruction and reprojection

by establishing pointwise correspondence within the curves. Furthermore, the intersection of an

epipolar line and a given curve is reduced to simply checking which discrete parameter interval of

the curve the epipolar line belongs to. The removal of points near epipolar tangency by insisting

that all curve tangents have an angle of τα or more (τα = 10◦) also allows for a stable intersection

point computation.

Curve reprojection. The 3D curve fragment Γk is reprojected onto view v. We can also use an

image to image transfer (e.g.the Trifocal transfer [69]), but we followed the simpler implementation.

The distance d(γk,v,Mv) uses the distance transform of edge maps to lookup the closest edgels to

each point of the curve. First, the image edgels are hashed into a bucket grid so that subpixel edgels

can be very efficiently indexed. Typically, the bucket size is that of a pixel. The distance transform

gives the distance of any bucket to the nearest bucket containing an edgel, and associated nearest

label map provides the address of this nearest bucket. Thus, for each projected curve point one

can quickly lookup the nearest bucket containing an edgel. However, instead of using the distance

transform values, we directly measure the distance between the query point and the subpixel edgel

inside the nearest bucket. The distance transform and nearest label map are efficiently precomputed

for the entire set of images prior to matching and calibration.
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Figure 5.14: (a) A set of sample views from the “Capitol Sequence”; (b) detected subpixel
edgels at low gradient threshold are used to generate hypothesis curves; (c) detected subpixel
edgels at a higher gradient threshold are used in the confirmation views; (d) curve fragments
with length > 40 pixels used in Stage I; (e) fragments with length > 20 pixels; (f) a selected
curve is highlighted in view 1 and the curves in view 2 with sufficient epipolar overlap are
marked in blue. In the next three images the reprojected hypothesis curve pair is shown in
cyan, confirmed in (g) but rejected in (h) and (i). The example in (i) shows the need for
orientation in the presence of clutter!
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Parameters of the system. Table 5.1 gives a description of each parameter of the system.

Symbol Description Default Value

τl minimum length of image curve fragments 40 pixels (first stage), 20 pixels (second stage)

τe minimum epipolar overlap 5 pixels

τd maximum distance of supporting edgels 10 pixels

τθ maximum orientation difference of
10◦

supporting edgels

τα minimum angle of curve segments with
10◦

epipolar lines to reconstruct

τt minimum total inliers for a match
5 edgels

to be considered reliable

τv minimum number of inliers of a supporting view 10 edgels

τr minimum best to second best ratio 1.5

b baseline between hypothesis views 40◦

bc baseline between consecutive confirmation views 1
3
b

Nc number of confirmation views 4

Table 5.1: Table of parameters of the system.

Distance Transform. We used one of the fastest exact Euclidean algorithms for our distance

transform, instead of an inexact Chamfer distance map [43, 105]. This is crucial for the correctness

of our approach.

Language. We used C++ to implement the system based on widely-available open source libraries,

such as Boost (www.boost.org), VXL (vxl.sourceforge.net), and others. The experiments ran

on Linux but the code is very portable.

5.5 Experimental Results

The Capitol Building Sequence consists of 500 frames covering a 90◦ helicopter fly-by from the

Rhode Island State Capitol, using a High-Definition (HD) camera (1280×720). Intrinsic parameters

were obtained from Matlab Calibration toolbox. Extrinsic parameters were obtained by manually

marking/tracking 30 corresponding points on every view they appear in. This data is challenging

due to a mix of curved and linear structures, a complex background, and structures of various sizes.

The Capitol Building High Sequence consists of 256 frames coming from a 270◦ helicopter

fly-by at higher altitude capture the Rhode Island State Capitol. Objects of interest appear in lower

resolution than in the regular Capitol sequence, leading to higher reconstruction errors.

The Downtown Sequence consists of 173 frames covering a 360◦ helicopter fly-by over downtown

Providence, using an HD camera (1280 × 720). The sequence was automatically calibrated using

Bundler [1], a sift-based structure from motion program. This data contains correlated and repeated

structures, e.g., a large number of long straight lines, easily confused with other lines due a to lack

shape.

The Dinosaur Sequence from [134] was selected because it is a standard multiview-stereo dataset

used by the computer vision community, even though it is not representative of the types of general

www.boost.org�
vxl.sourceforge.net�
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Figure 5.15: Example of human-marked ground truth correspondences on a small section
of the “Capitol Sequence”. Curves that were marked as corresponding are represented with
the same color, and curves not participating in any correspondence are in red. The thicker
blue curve in the left image indicates a curve the user is inspecting.

scenery for which our approach can be most useful. The Cameras sample 363 views at 640×480 on a

hemisphere around the object. The data is low resolution and contains a large number of occluding

contours.

Ground truth for the 3D Surfaces is only available for the simplest scenes, such as the Dinosaur

sequence and others from [134]. It is virtually impossible to get comprehensive ground-truth for

the challenging real-world datasets tested in the present work. Even if such a ground truth were

available, the evaluation of the system as a whole would confound the performance of the proposed

approach with that of the edge detector and linker. Rather, we focus instead on evaluating the

ability of the system to find the correct correspondence between curve fragments in two views, by

manually recording the ground-truth correspondence between two views of each dataset. Figure 5.15

shows an example of such ground-truth.

A GUI tool was developed for this purpose to insert, delete, and inspect correpondences between

two views. The views selected for this were such that they had a baseline near the minimum

required for accurate 3D reconstruction for the given dataset. Curve fragments were detected on

each hypothesis view and broken at epipolar tangencies. The human operator clicks on each curve

fragment in view 1, and the GUI tool highlights the candidate curves in image 2 having epipolar

overlap.

The operator is instructed to mark as ground truth correspondents all the curve fragments which

come from the same underlying physical 3D structure, i.e., having subsets coming from the same 3D

positions. If there is any ambiguity in this selection, the operator is allowed to use every information

possible to try to disambiguate the match: she is allowed to hypothesize a match in view 2 and the



123

software will display reprojections for that match in all other confirmation views; she can also overlay

the curve fragments onto the original images. The user can then gather evidence until the hypothesis

is clearly decided. If all fails, the user can request to reconstruct the hypothesis and examine it in

3D; she can also reconstruct all the unambigous groundtruth marked so far and examine how well

the reconstructed 3D curve hypothesis fits in the context of the already reconstructed ground truth.

This kind of reasoning leaves little doubt as to what the corresponding curves should be. Ambiguity

can still remain, such as a few very closeby and similarly shaped curves in a low-spatial frequency

section of the image. In such cases, the user is allowed to mark two alternatives as equally good

matches, but these form a small percentage of the total data. Positive matches are the pairs (γ1
i ,γ

2
j )

marked by the human in the ground truth. Conversely, negative matches are all the pairs not marked

in the ground truth.

Results. Figure 5.16 shows Precision/Recall curves for each dataset comparing the core 3D curve

sketch to the ground truth. All datasets get 100% precision at 1/3 recall, which is 40 curves for the

Downtown, 65 curves for the Capitol sequence, and 30 curves for the Dino sequence. This is already

plenty enough for calibration (much more than the usual 40 corresponding points needed for stable

estimation [69]). Note that these numbers of core reliable curves are much higher if we pick the right

operating point per dataset.

The role of differential geometry, or orientation, in this work, is explored by enlarging the

orientation threshold to 90◦ so that it no longer plays a role. The plots on the right of Figure 5.16

show a significant degradation as the role of orientation is reduced. We expect a similar role for

curvature.

Figure 5.17 shows the quality of the core 3D curve sketch which is obtained by integrating a

large number of hypothesis views. This is best viewed in 3D (see the supplementary data of the

paper [47]) to appreciate the 3D structure presented by the 3D curve sketch. Observe the potential

of this curve sketch as a scaffold on which surface patches can be constructed. Other results are

shown in Figures 5.18, 5.19, and 5.20.

Running times. Tables 5.2 lists the total running time of our research code for the system, and

Table 5.3 compares the running times of our subpixel edge detector plus linker versus sift.

5.6 Conclusion

We have presented a novel framework for multiview reconstruction and calibration refinement based

on image curve content. The approach augments existing interest-point based and stereo approaches

in providing explicit curve geometry as well in extending applications where the assumption of these

methods fail but image curve content is present. A key capability is integration across many views,

e.g., as in Google’s Street View. The present work is expected to form the initial building block in a

broader effort to use image evidence of the explicit geometry of curves and surfaces and reconstruct

these by integrating information across many views. The 3D curve sketch presented here, when

enriched by interpolating across epipolar gaps, will then be the initial scaffold on which surfaces
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Figure 5.16: Precision/Recall curves for the core 3D curve sketch correspondence, ob-
tained by varying the total support score τt. Left: the optimal evaluation curve shown
in red; Right: varying the orientation threshold τθ to demonstrate the usefulness of the
differential geometry constraint. Notice how eliminating orientation (τθ = 90◦) degrades
performance. These experiments used disambiguation threshold τr = 1.5, length τl = 40px
for the Downtown and Capitol sequences (hi-res), and τl = 20px for the Middlebury Dino
sequence (low-res).
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Figure 5.17: The 3D curve sketches for the Dino and Capitol sequences.

Dataset # 3D Curves # Hypot. Views Min. Length τl Time (s)

Dino 3712 100 20 466

Capitol 1231 30 40 567

Capitol High 1742 30 40 633

Downtown 2340 30 40 985

Table 5.2: Total running times for our research multiview curve stereo module, including
loading of edge detection and linking from disk, and computation of distance transforms. All
times are for an Intel Xeon 3.2GHz and code with multithreading disabled. The number of
3D curves column indicate how many curves were generated by running our algorithm with
the specified number of hypothesis views.
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(a) (b)

(c)

Figure 5.18: The 3D curve sketch reconstructions for the Downtown sequence using
30 sets of hypothesis views: (a) the raw 3D curve sketch showing the best candidate
curves without any support confidence threshold (τt = 0); (b-c) top and side views of
the reliable curve sketch under the operating point of 30% precision and 100% recall
(τt = 100 supporting edgels). The dots seen in (b) are top views of perfectly vertical curves
of buildings. The representation is very efficient while still being rich enough to be used in
applications such as calibration refinement and for registering new views to the scene.
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Figure 5.19: Raw 3D curve sketch reconstruction for the dinossaur with maximum recall,
showing the raw output of the best candidate curves before thresholding for support. Fig-
ure 5.17, in contrast, shows only the curves at the 30% recall rate operating point.
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(a) (b)

(c) (d)

Figure 5.20: Additional 3D curve sketches for the capitol: (a) a view of the reconstruction
for the maximum recall, showing all the best curves along the epipolar lines, without any
threshold (τt = 0) on the total support; (b) the same reconstruction operating at 30% recall
rate and perfect precision (see Figure 8 in the original paper for the operating point param-
eters), being more sparse but much more reliable, used as input to curve-based calibration
refinement. (d) The same reconstruction at 50% recall rate, which yields 100% precision in
the evaluation, but which might contain false positives here because we run the system for
many 30 hypothesis views, not including the ones used in evaluation.
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Dataset sift (s) Subpixel edge detector (s) Symbolic linker (s)

Dino 1.53 0.33 2.72

Capitol 9.85 2.25 38.91

Capitol High 9.60 2.51 46.74

Downtown 11.34 3.49 56.89

Table 5.3: Running times of feature detection: the added cost of using edge curves
as compared to sift. We used David Lowe’s sift binary, which is heavily optimized, while
the edge detector and symbolic linker are research code. All times are for an Intel Xeon
3.2GHz.

may be constructed. The effort is also underway for curve-based auto calibration based on the ideas

presented here.

Additional Implementation Details

The main executable for doing multiview curve stereo is mcs, while the executable to refine camera

pose given an initial 3D curve sketch is called mcp. These executables can be found in my contrib

folder in lemsvxlsrc.

Multiview Curve Stereo

This module is responsible for generating a 3D curve sketch from the given video sequence and

camera calibration. In order to run mcs on a sequence, we can use the mcs executable directly, or

we can use the mcs rec script.

I usually have scripts mcs rec dataset name, where dataset name is a stamp for the dataset,

and I set the optimal parameters for the dataset inside such script. The mcs rec executable actually

runs the job in the background, and writes the commandline parameters and other identifying info

such as timing inside the result directory.

The 3D curve sketch representation

The 3D curve sketch is a representation of the 3D scene by a set of 3D contours is the 3D curve

sketch. In the system, each 3D curve has an associated pair of hypothesis views from which it was

generated, together with a total inlier score of that curve over all views that were used in the mcs

stage.
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Multiview Curve Photogrammetry

This module accepts as input a 3D curve sketch representation, together with initial cameras, and

outputs optimized cameras.



Chapter 6

Conclusion and Future Work

In this thesis we presented the differential-geometric theory of multiview projection and reconstruc-

tion of general curves, providing a unified framework to model fixed, occluding, and nonrigid curves

under both a discrete set of views and differentiable camera motion. We also presented a practical

curve-based multiview reconstruction and calibration system called the 3D curve sketch.

On the theoretical side, we studied how the differential geometry of curves behaves under per-

spective projection, including the effects of intrinsic parameters. For instance, we studied how the

tangent, curvature, and curvature derivative of a space curve projects onto an image, and how

the motion of the camera and of the curve relate to the projections. We also gave formulas for

reconstructing differential geometry, given differential geometry at corresponding points measured

in two views. In particular, this gives a novel result of reconstructing space curve torsion, given

correspoinding points, tangents, curvatures, and curvature derivatives measured in two views. We

determined that there are no constraints in two views – any pair of corresponding points with at-

tributed tangents, curvatures, and curvature derivatives are possible matches, as long as the basic

point epipolar constraint is satisfied. There is, however, a constraint in three views: from two

views one can transfer differential geometry onto a third and enforce measurements to match the

reprojection. This has been used in the practical work in curve-based multiview stereo described in

Section 5.

Preliminary results on the multiview differential geometry of surfaces was also provided in an

Appendix, describing their local induced flow in images and differential aspects of shading. On

another appendix we also described preliminary research on geometric and qualitative aspects of

epipolar geometry estimation, which provide foundations for future work on automatic curve-based

structure from motion for a large number of views.

On the practical side, we have presented a novel framework for multiview reconstruction and

calibration refinement based on image curve content. The approach augments existing interest-point

based and stereo approaches in providing explicit curve geometry as well in extending applications

where the assumption of these methods fail but image curve content is present. A key capability

is integration across many views in large-scale applications such as in using Google’s Street View
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imagery for reconstructing cities and beyond.

6.1 Future Work

This thesis is part of a greater effort of augmenting Multiple View Geometry to handle general

curved structures, including curves, surfaces and non-rigid phenomena. The main lines of future

research are: the theory and practice of the multiview differential geometry of surfaces, and the

automatic curve-based calibration of multiple views. A more detailed list of future work is given

below.

6.1.1 Theory

• Further development and refinement of the differential-geometric theory on surfaces. This

includes the study of shading under illumination models other than Lambertian.

• Curve-based calibration of 3 views. Research is underway in conjunction with prof. Peter

Giblin to solve the problem of determining trinocular relative pose from corresponding point-

tangents across 3 views. Coupled with our single-view pose calibration method from Section 4,

this would allow for complete curve-based structure from motion systems starting from a set of

images without any initial calibration. Extending these ideas to include curvature is another

research possibility.

• Study of how differential geometry transforms under lens distortion.

• Study of the multiview differential geometry of highlights contours or specular reflection con-

tours.

• Futher study of nonrigid phenomena.

6.1.2 Practice

• Enrichment of the proposed 3D curve sketch with surface patches. The 3d curve sketch system

is expected to form the initial building block in a broader effort to use image evidence of the

explicit geometry of curves and surfaces and reconstruct these by integrating information

across many views. The 3D curve sketch was designed to be the initial scaffold on which

surfaces may be constructed. It forms a reliable structure from which to bootstrap a larger

reconstruction system that works under general conditions. One idea for incorporating surfaces

is the use of occlusion relationships to define a rough, preliminary surface structure between

3D curves. This initial model can then be optimized for photoconsistency to obtain a more

precise surface model. One way to carry this out is to use a hypothesize-and-test framework,

where we form hypotheses for whether there is a surface patch between two 3D curves, and test

these hypothesis by reprojecting onto views and verifying consistency. Hypothesis formation

could be image-based where we project the 3D curve sketch onto an image (or a series of
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reference images), and form region fragments between neighboring image curves. Each surface

hypothesis could be tested by forming a rough surface model between the underlying 3D curves

of the patch (e.g., a by fitting a minimal surface), and projecting the entire curve sketch onto

another view. Using the model for the surface patch, one can predict what other curves

should be occluded in case the hypothesis is correct. We then look in the image for any edges

that would support the curves that should have been occluded. If there is support, then the

curves are not actually occluded and the surface hypothesis must be false. The baisc idea of

using image region fragments has been successful as part of the top-performing 2-view stereo

algorithms in the literature.

• Use of curvature in the 3D curve sketch reprojection cost. Currently, only tangent information

is used to disambiguate stereo matches. By augmenting the cost with curvature, we expect to

get a large increase in the reliability of the matching, which allows us to use less confirmation

views and to reconstruct correspondences that would otherwise be deemed unreliable. We

expect the addition of even a rough form of curvature will be helpful.

• Use of curvelets in the 3D curve sketch reprojection cost. This is related to the previous item.

Curvelets are small local grouping hypotheses of a few edgels (say 5–10) [144]. They can be

used to avoid having a reprojected curve gather support from edgels coming from different

image curves, by requiring the support to be consistent with the curvelets.

• Improvement of the 3D curve sketch reconstruction by consoldiating the 3D curves. The

system described in this thesis may reconstruct the same curve twice or more, in case the

same curve appears in more than a pair of hypothesis views. We need a way of linking the

correspondences and reconstructions across different pairs of hypothesis views.

• Improvement of the 3D reconstruction in the neighborhood of epipolar tangencies. In the

system described in this thesis, we use a parameter τα which is the minimum angle of curve

segments with epipolar lines. Any curve segments/subcurves forming an epipolar angle smaller

than τα are not reconstructed. This generates a more precise but less complete 3D reconstruc-

tion. In order to reconstruct across these epipolar gaps, it is necessary to perform some kind

of interpolation using the pointwise correspondence information of the reliable segments of

the curve. This can be achieved by using dynamic programming, followed by an iterative

optimization procedure, to find a global pointwise correspondence between the two curve

fragments. Such a technique is used in the manual CAD system of [159].

• Use of the “sweep” idea to speed up curve correspondence in the 3D curve sketch system.

Robert and Faugeras [131] proposed an idea of an epipolar sweep between two views so that

intersections of curve fragments with epipolar lines can be done only once. This avoids a huge

redundancy because the epipolar candidates for a given curve fragment in the left image is

a set of curve fragment in the right image which has huge overlap with the set of epipolar

candidates for another curve fragment in the left image. By using endpoint transitions as one
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sweeps the epipolar lines by increasing angle, it is possible to get a very fast algorithm for

determining the epipolar candidates.

• Incorporation of occluding contours into the 3D curve sketch system. This would require views

to be dense, as in a video. The system proposed in this thesis is able separate stationary curves

from non-stationary curves (up to the calibration accuracy). Amongs the non-stationary

curves, one needs to pick out which ones are occluding contours, and which ones are not (such

as specular highlight contours). An idea for doing this is to first treat each curve as if it was

an occluding contour, then test this hypothesis. First, one would track/match the given curve

fragment with (at least) the next and the previous frames, since 3 views are necessary for a

local surface model reconstruction by [98]. Once a local 3D surface model is obtained, one can

check the photoconsistency of this 3D surface model with other views that see it head-on. If

the surface patch is photo-consistent, then the curve triplet is classified as apparent contours.

The output of the system would be our 3D curve sketch augmented with surface patches near

occluding contours.

• Further study of Papadopoulo’s experiments and numerics regarding the practical use of the

equation relating normal curve velocities to camera calibration described in Chapter 3. It

would be of great importance to make such a useful equation practical.

• Improve convergence of bundle adjustment in the 3D curve sketch system. For certain com-

binations of scenes and number of curves, we observed that our proposed bundle adjustment

may not converge. One possibility is to use an analytic Jacobian in the curve based bundle-

adjustment, since for this thesis we used a numerical Jacobian computation.

• Image-based matching of curves in two and three views, so that these correspondences can be

used to bootstrap camera calibration from curves. We have done preliminary work using sift

descriptors attached to curves, and the matching results were very promising. The descriptors

are rotated to match the tangent direction of the curve at each sample. There is room for

improvement in terms of efficiency, as we are computing sift descriptors at different scales for

each curve sample, as well as matching all of them. Perhaps a subsampling strategy should be

used, or even a different strategy where the histogram bins are placed on a global grid built

around the entire curve.

• Extension of the qualitative/geometric ideas of Appendix D for epipolar geometry to curves.

• Development of a better numeric method to measure curvature derivative, allowing to measure

3D torsion from image curves. Perhaps even a coarse but robust measurement of curvature

derivative could be useful in practice.



Appendix A

Surface differential geometry

The purpose of this section is to summarize the concepts of differential geometry of surfaces, focused

on the research topics of this thesis. It serves as a review for people that already have some knowledge

of differential geometry. Another goal is to explicitly clarify confusions, motivate concepts and justify

notation, so this is not a brief summary. For example, we motivate and interpret the first and second

fundamental forms, since most people feel uneasy with the concepts behind these abstract entities at

first. In a sentence, the need for these entities comes from the desire to study the surface intrinsically,

avoiding references to the extrinsic space (R3) as much as possible.

A.1 Basics

Let us begin by defining the differential of a vector function of a vector variable (also called a map).

Definition 4. (From [35]) Let F : U ⊂ Rn → Rm be a differentiable map. To each p ∈ U we

associate a linear map dFp : Rn → Rm, which is called the differential of F at p, and is defined as

follows. Let w ∈ Rn and γ(−ε, ε) → U be a differentiable curve such that γ(0) = p, γ′(0) = w. Let

the curve Γ = F ◦ γ : (−ε, ε) → Rm, then:

dFp(w) := Γ′(0). (A.1.1)

This definition does not depend on the curve γ. In simple terms, the differential of a map is a

linear map which, applied to any given vector w ∈ Rn, gives the directional derivative of the map

along w.

We can write the matrix of dFp relative to the canonical bases of Rn and Rm, which is called

the Jacobian matrix of F = (f1, . . . , fm)>:

J = Jac[F ] =
(
∂fi

∂xj

)
=

[
∂F
∂x1

. . . ∂F
∂xn

]
(A.1.2)

When n = m, the Jacobian matrix is square and its determinant is called the Jacobian determinant
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or just ‘Jacobian’, and is denoted by

det
(
∂fi

∂xj

)
=
∂(f1, . . . , fm)
∂(x1, . . . , xn)

. (A.1.3)

A regular surface M is a 2-dimensional submanifold of R3. This means that, for each point Γ

of the surface, there exists a ‘chart’, or ‘parametrization’, or ‘system of (local) coordinates’, which

maps a region of the plane R2 into the neighborhood (called coordinate neighborhood) of the point

Γ in the surface. This mapping is a diffeomorphism, which means it is differentiable and invertible

(the inverse also being differentiable)1. The intuition is that each point of the surface is locally

equivalent to a plane, as far as differential questions are concerned. We will denote coordinates as

ξ, η, and the points in a neighborhood of Γ are parametrized by Γ(ξ, η). Notice that many different

parametrizations may be necessary to cover all points of a regular surface.

Regular surfaces admit a tangent plane Tp(M) at every point p ∈ M, given by dΓp(R2) ⊂
R3. The choice of parametrization determines the basis {Γξ,Γη} of the tangent plane. A vector

w ∈ Tp(M) has coordinates (ξ′(0), η′(0)) in such basis, where (ξ(t), η(t)) is the expression, in the

parametrization Γ, of a curve whose velocity vector at t = 0 is w. This comes from the chain rule:

Γ′(t) = Γ′(ξ(t), η(t)) = Γξξ
′ + Γηη

′.

A.2 First Fundamental Form

Definition 5. (First fundamental form) The quadratic form Ip on on Tp(M) defined by

Ip(w) = w ·w = ‖w‖2 , (A.2.1)

where w is a tangent vector to M, is called the first fundamental form of the regular surface M.

The importance of the first fundamental form comes from the fact that, once it is given, we can

treat metric questions (such as lengths, angles of tangent vectors, and areas) on a regular surface

without further reference to the extrinsic space R3.

For our purposes, the first fundamental form is equivalent to a norm attached to the tangent

plane of the surface at each point. In practice, we will be dealing with the usual norm of R3,

but expressed in the basis {Γξ,Γη} of the tangent plane, thus applying to two-dimensional local

coordinates (ξ, η) in such basis instead of the three extrinsic coordinates x, y, z.

The choice of a first fundamental form on the surface is also equivalent to the choice of an inner

product defined on tangent vectors of the surface. Given a norm on tangent vectors I(w) = ‖w‖2 =

w ·w, we can take inner products as

v ·w =
1
2

[‖v + w‖2 − ‖w‖2 − ‖v‖2] . (A.2.2)

The first fundamental form has an associated matrix of coefficients E, F, G, which are dependent

on a chosen basis {Γξ,Γη} of Tp(M), which, in turn, is defined by a parametrization Γ(ξ, η) of M.

1The rigorous notion of a differentiable map defined on a surface is not important for now.
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Let us obtain the coefficients of the first fundamental form. Any vector in Tp(M) is the tangent

vector Γ′(t) of some curve Γ(t) = Γ(ξ(t), η(t)) in M. The coordinates of such vector in the basis

{Γξ,Γη} is (ξ′, η′). Thus, the first fundamental form can be written as

Ip(w) = Ip(Γ′(t)) = Γ′(t) · Γ′(t) = (Γξξ
′ + Γηη

′) · (Γξξ
′ + Γηη

′)

= Eξ′2 + 2Fξ′η′ +Gη′2, (A.2.3)

where E, F, G are given by:

E = Γξ · Γξ

F = Γξ · Γη (A.2.4)

G = Γη · Γη.

The arc length of a curve Γ(t) of M is given by

s(t) =
∫ t

0

‖Γ′(t)‖dt =
∫ t

0

√
I(Γ′(t))dt. (A.2.5)

Using coordinates, the curve Γ(t) can be written as Γ(ξ(t), η(t)), thus

s(t) =
∫ t

0

√
Eξ′2 + Fξ′η′ +Gη′2dt. (A.2.6)

Hence, given the coefficients E,F,G, we can forget about the embedding space R3 if we want to

measure arclengths. This is in the same spirit as the Frenet frames for curves, where we write all

entities in terms of this frame instead of the world frame, thus remaining intrinsic to the object.

First fundamental form of the sphere in spherical coordinates. The unit sphere can

be parametrized by γ̂ : U ⊂ R2 → R3 as

γ̂(θ, φ) = (cosφ sin θ, sinφ sin θ, cos θ) , (A.2.7)

whose first fundamental form is E(θ, φ) = 1, F (θ, φ) = 0, and G(θ, φ) = sin2 θ. Thus, if w is a

tangent vector to the sphere at the point γ̂(θ, φ), given in the basis associated to γ̂(θ, φ) by

w = aγ̂θ + bγ̂φ, (A.2.8)

then the square of the length of w is given by

‖w‖2 = I(w) = Ea2 + 2Fab+Gb2 = a2 + b2 sin2 θ. (A.2.9)

Definition 6. (Area) The area of a region R of a surface is defined as

A(R) =
∫ ∫

Q

‖Γξ × Γη‖dξdη =
∫ ∫

Q

√
EG− F 2dξdη, (A.2.10)

where Γ(ξ, η) is a parametrization of the surface in consideration and Q = Γ−1(R).
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A.2.1 Gradients on Surfaces.

Definition 7. (From [35]) The gradient of a differentiable function defined on a surface f : M→ R
is a differentiable map ∇f : M→ R3, p ∈M 7→ ∇f(p) ∈ Tp(M) such that

∇f(p) · v = dfp(v), ∀v ∈ Tp(M). (A.2.11)

Proposition A.2.1. If E, F, G are the coefficients of I in a parametrization Γ(ξ, η), then ∇f on

the range of Γ is given by

∇f =
fξG− fηF

EG− F 2
Γξ +

fηE − fξF

EG− F 2
Γη. (A.2.12)

The definition of gradient on a curved surface is consistent with the usual definition of gradient

in the plane. If the surface M = R2 with coordinates x, y, we can then apply the proposition to

show that

∇f = fxe1 + fye2, (A.2.13)

where {e1, e2} is the canonical basis of R2.

Corollary A.2.2. The vector ∇f gives the direction of maximum variation of f . More precisely,

letting p ∈ M be fixed and v vary in the unit circle ‖v‖ = 1 in Tp(M), then dfp(v) is maximum

if and only if v = ∇f/‖∇f‖. Moreover, The vector ∇f is normal to all points of the level curve

C = {q ∈M; f(q) = const}, wherever ∇f 6= 0.

A.3 Normals, Gauss Maps, and Second Fundamental Forms

The normal vector N at a point p is a vector orthogonal to the tangent plane at p. For a given

parametrization Γ(ξ, η), we can choose the field of normals

N =
Γξ × Γη

‖Γξ × Γη‖ . (A.3.1)

We could also choose −N, as long as the choice is consistent (differentiable) in a neighborhood of

the chosen point p.

Definition 8. The field of normals N : M→ S2 maps each surface point onto the unit sphere S2

of directions, and is called the Gauss map.

Definition 9. The differential of the Gauss map, dN , is called the Weingarten map, and its negative

−dN is called the Shape operator. The Weingarten map is a linear map giving the directional

derivatives of the normal vector N along any vector. More precisely, letting p be a point of the

surface, and w a vector in the tangent plane, then

dNp : Tp(M) → TN(p)(S2) or Tp(M) (A.3.2)

w 7→ dNp(w)
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where dNp(w) is given by the following rule. If α(t) is a curve in the surface such that α(0) = p

and α′(0) = w, then N(t) := N ◦α(t). In the parametrization Γ(ξ, η), the vector w has coordinates

(ξ′(t), η′(t)), and dNp(w) = dNp(ξ′(t), η′(t)) = N′(t). Since Tp(M) and TN(p)(S2) are parallel

planes, we can see dNp as a map from Tp(M) to Tp(M).

Proposition A.3.1. The differential dNp : Tp(M) → Tp(M) of the Gauss map is a self-adjoint

linear map.

Proof. See [35, p. 140]. ¥

For completeness, we include the definition of a self-adjoint linear map:

Definition 10. A linear map A : V → V is self-adjoint if (Av) ·w = v · (Aw) for vectors v,w ∈ V .

For an orthonormal basis, the matrix (aij) of a self-adjoint linear map A is symmetric. To each

such map, we can associate a bilinear form B(v,w) = (Av)·w and a quadratic form Q(v) = B(v,v).

Self-adjoint linear maps, bilinear forms, and quadratic forms are in 1-1 correspondence with each

other, therefore being equivalent.

Since the Weingarten map dNp is self-adjoint, we can associate a quadratic form Q to it, given

by Q(v) = dNp(v) · v. For convenience, the literature works with the form IIp(v) = −Q(v):

Definition 11. The quadratic form IIp, defined in Tp(M) by IIp(v) = −dNp(v) · v, is called the

second fundamental form of M at p.

It can be shown that for a unit vector v̂, IIp(v̂) = κn(p), where κn(p) is the normal curvature in

the direction v̂. This is the reason for the negative sign in the definition of the second fundamental

form: we want this interpretation to hold without a negative sign.

There is a general theorem involving self-adjoint linear maps and the extrema of the associated

quadratic form, which we will apply to define the principal curvatures. The theorem is:

Theorem A.3.2. (From [35]) The eigenvalues of a self-adjoint linear map A : V → V are the

extrema of the associated quadratic form on the unit circle of V . The corresponding unit eigenvectors

form an orthonormal basis. They diagonalize the matrix A of the considered linear map, i.e., the

matrix A of the linear map relative to the eigenvectors is diagonal, the diagonal elements being the

eigenvalues.

Hence, associated to IIp(v̂) = κn there are maximum and minimum normal curvatures κ1 and

κ2, which are also eigenvalues of −dNp.

Definition 12. (Principal curvatures and directions) The maximum and minimum normal curva-

tures κ1 and κ2 are called the principal curvatures at p, the corresponding directions (given by the

corresponding eigenvalues of −dNp) being called the principal directions.

Another useful fact of general linear maps A : V → V is that the trace and determinant of A

are independent on the choice of bases for V .
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Definition 13. (Gaussian and mean curvatures) Let dNp be the differential of the Gauss map.

Then

K = κ1κ2 = det dNp (A.3.3)

H =
κ1 + κ2

2
= −1

2
trace dNp (A.3.4)

Definition 14. (Umbilical points) The point p ∈ M is called and umbilical point if κ1 = κ2, and

the umbilical points having κ1 = κ2 = 0 are called planar points.

Definition 15. (Asymptotic directions) An asymptotic direction of M at p ∈ M is a direction of

Tp(M) for which the normal curvature is zero. An asymptoptic curve of M having its tangents

along asymptotic directions at all points.

Proposition A.3.3. (Euler’s formula) The normal curvature in any direction θ measured from a

principal direction corresponding to principal curvature κ1 is given by

κn(θ) = κ1 cos2 θ + κ2 sin2 θ (A.3.5)

Proof. Let w = ρ̂ŵ = ρ̂(sin θ, cos θ) be a parametrization for the tangent plane in the basis {ē1, ē2},
where ē1 and ē2 are along the principal directions. Then

IIp(w) = −dNp(w) ·w = −dNp(ρ̂ŵ) · ρ̂ŵ = −ρ̂2dNp(ŵ) · ŵ (A.3.6)

= −ρ̂2dNp(sin θē1 + cos θē2) · (sin θē1 + cos θē2), (A.3.7)

and, since dNp is linear and e1 and e2 are its eigenvectors, we have

= ρ̂2(sin θκ1ē1 + cos θκ2ē2) · (sin θē1 + cos θē2) (A.3.8)

Thus, we have:

IIp(w) = ρ̂2(κ1 cos2 θ + κ2 sin2 θ) (A.3.9)

The last expression is known as the Euler formula; actually, it is just the expression of the second

fundamental form in the basis ē1, ē2. For a unit vector ŵ, ρ̂ = 1, then IIp(ŵ) is the normal curvature

along ŵ, so the Euler formula assumes the form stated in the theorem. ¥

The second fundamental form can be shown to be the osculating paraboloid to the surface, i.e.,

the second-order Taylor approximation to the surface.

Proposition A.3.4. Consider a local coordinate system such that x̄ and ȳ are along principal

directions, and z̄ is along a chosen normal direction N of the surface M. Then

z̄ =
1
2
IIp(w) =

1
2
κ1x̄

2 +
1
2
κ2ȳ

2, (A.3.10)

where w = (x̄, ȳ) is a tangent vector in the tangent plane Tp(M). The above equation defines the

osculating paraboloid of the surface M.
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Proof.

IIp(w) = −dNp(w) ·w = −dNp(x̄ē1 + ȳē2) · (x̄ē1 + ȳē2), (A.3.11)

and, since dNp is linear and {e1, e2} its eigenvectors, we have

IIp(w) = (x̄κ1e1 + ȳκ2e2) · (x̄e1 + ȳe2) (A.3.12)

= κ1x̄
2 + κ2ȳ

2 = 2z̄ (A.3.13)

¥

Thus, the second fundamental form is our paraboloid model equation in local coordinates given

by Equation (B.1.1) (multiplied by 2). The previous proposition shows that we can think about

the second fundamental form as the second-order approximation to the surface, i.e., the osculating

paraboloid. This is very insightful for our research, but it is not emphasized in many textbooks.

Dupin Indicatrix. The Dupin indicatrix can be defined as a level curve of the osculating

paraboloid. Its equation is given by:

IIp(w) = ±ε, (A.3.14)

or, in local coordinates x̄, ȳ, as

IIp(x̄, ȳ) = κ1x̄
2 + κ2ȳ

2 = ±ε, (A.3.15)

where ε is usually fixed at 1. The Dupin indicatrix is shown to be approximately equal to the

intersection of the surface M with a plane parallel to Tp(S) having distance 2ε from p (to first order,

in the limit ε → 0). Since the Dupin indicatrix is a level curve of the osculating paraboloid IIp, it

assumes the shape of an epllipse whenever IIp is an elliptic paraboloid, and the shape of a hyperbola

whenever IIp is a hyperbolic paraboloid. We say that, in those cases, p is called an elliptic point

and a hyperbolic point, respectively.

A.3.1 Conjugacy

Given the importance of conjugacy for our research, e.g., in relating occluding contours to viewing

direction, we will give a more comprehensive treatment to this topic.

Definition 16. Let p be a point of a surfaceM. Two nonzero vectors w1,w2 ∈ Tp(M) are conjugate

if dNp(w1) ·w2 = w1 · dNp(w2) = 0. Two directions r1, r2 at p are conjugate if there is a pair of

conjugate vectors along them.

Since the condition for a conjugate point does not depend on the scale of the two vectors, it is

a projective relationship, i.e., it is invariant to projective transformations. Koenderink’s book [89,

p.230] also talks about conjugacy as a “generalization” of orthogonality in affine and projective

spaces. In order to have an intuition of this, let us first give a geometric construction of conjugate
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Figure A.1: Orthogonal (thus conjugate) directions r1 and r2 transform to conjugate direc-
tions r′1 and r′2 after an affine or projective transformation.

directions, as illustrated in Figure A.1. Consider an ellipse or any other central conic curve, and

consider two directions r1 and r2 passing through the center of the curve. Let p1 be an intersection

of r1 with the conic, and let p2 be an intersection of r2 with the conic. Two directions r1 and r2 are

conjugate with respect to a conic if the tangent to the conic at p1 is parallel to r2, and vice versa:

the tangent to the conic at p2 is parallel to r1. In the case of surfaces, the Dupin indicatrix serves

as the conic in this construction. Another way of stating this construction is that a position vector

of a conic is conjugate to the tangent vector at this position.

Hartley’s book [69] also mentions that conjugacy with respect to the image of the absolute conic

(IAC) has to do with orthogonality.

A.3.2 Gauss Map in Local Coordinates

Considering an arbitrary curve Γ(t) = Γ(ξ(t), η(t)) ∈M, whose tangent vector is along any desired

direction in the tangent plane, we have:

II(Γ′) = −dN(Γ′) · Γ′ = −(Nξξ
′ + Nηη

′) · (Γξξ
′ + Γηη

′) (A.3.16)

= eξ′2 + 2fξ′η′ + gη′2, (A.3.17)

where

e = Nξ · Γξ = N · Γξξ (A.3.18)

f = Nξ · Γη = N · Γξη (A.3.19)

g = Nη · Γη = N · Γηη. (A.3.20)

The matrix II of II in the basis {Γξ,Γη} is:

II =

[
e f

f g

]
, (A.3.21)

and the matrix I of the first fundamental form is

I =

[
E F

F G

]
. (A.3.22)
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The matrix of the linear map dN is called the Jacobian matrix of N, and can be shown to be given

by:

J[N] = −I−1II, (A.3.23)

with

I−1 =
1

EG− F 2

[
G −F
−F E

]
, (A.3.24)

thus

J[N] = −
[
E F

F G

]−1 [
e f

f g

]
(A.3.25)

= − 1
EG− F 2

[
G −F
−F E

]−1 [
e f

f g

]
. (A.3.26)

We can then write the so-called equations of Weingarten, which are the 4 entries (aij) of the Jacobian

matrix of the Gauss map with respect to the fundamental forms:

a11 =
fF − eG

EG− F 2
, (A.3.27)

a12 =
gF − fG

EG− F 2
, (A.3.28)

a21 =
eF − fE

EG− F 2
, (A.3.29)

a22 =
fF − gE

EG− F 2
, (A.3.30)

where the first index denotes the row, and the second index the columns. Formulas for the Gaussian

and mean curvatures for a given parametrization are given below:

K =
eg − f2

EG− F 2
(A.3.31)

H =
1
2
eG− 2fF − gE

EG− F 2
. (A.3.32)

The first equation comes by taking the determinant of (A.3.23). The equation for the mean curvature

is obtained by writing the characteristic equation for the eigenvalue condition dN(η) = −κη, giving

κ2 + κ(a11 + a22) + a11a22 − a12a21 = 0 (A.3.33)

or, from the elementary formulas of sum and product of the roots of a quadratic equation,

κ2 − 2Hκ+ κ = 0 (A.3.34)

From this, principal curvatures are:

κ = H±
√
H2 −K. (A.3.35)
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Observe that this is not valid at umbilical points, where H2 = K.

We can classify the surface point p according to the Gaussian curvature and the principal cur-

vatures, motivated, among other things, by the shape of the Dupin indicatrix at p:

Definition 17. A point p of a surface M is called

1. Elliptic if: K = det(dNp) > 0 ⇐⇒ κ1κ2 > 0 ⇐⇒ IIp(w) = ±ε is an ellipse ⇐⇒ eg − f2 >

0.

2. Hyperbolic if: K = det(dNp) < 0 ⇐⇒ κ1κ2 < 0 ⇐⇒ IIp(w) = ±ε is a hyperbola

⇐⇒ eg − f2 < 0.

3. Parabolic if: K = det(dNp) = 0 and dNp 6= 0 ⇐⇒ only one of κ1 or κ2 are zero (there is no

simple characterization in terms of the Dupin indicatrix) .

4. Planar if dNp = 0 (thus K = 0) ⇐⇒ κ1 = κ2 = 0.

An interpretation of the Gaussian curvature is given by

K = lim
A→0

A′

A
, (A.3.36)

where A is the area of a region B around the considered surface point, and A′ is the area of the

image of B by the Gauss map N : S → S2.

A.3.3 Surface as the graph of a function f(x, y)

Theorem A.3.5. The Eigenvalues of the Weingarten Matrix of z = f(x, y) are, for H ≥ 0



κ1 = H+

√
H2 −K

κ2 = H−
√
H2 −K ,

(A.3.37)

and for H < 0




κ1 = H−

√
H2 −K

κ2 = H+
√
H2 −K ,

(A.3.38)

where H and K are defined as




H =
(fxx + fyy) + (f2

y fxx − 2fxfyfxy + f2
xfyy)

2(1 + f2
x + f2

y )
3
2

K =
2(fxxfyy − f2

xy)
(1 + f2

x + f2
y )2

.

(A.3.39)

Proof. When the surface is expressed as a graph z = f(x, y), we can use the standard differential

geometry of surfaces [35] described in the previous section to express curvatures explicitly as deriva-

tives of the function. In general, the principal curvatures κ1 and κ2 and the principal directions ē1
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and ē2 are on the eigenvalues and eigenvectors, respectively, of the Weingarten Matrix which is the

product of the inverse of the first fundamental form and the second fundamental form:

W = −
[
E F

F G

]−1 [
e f

f g

]
. (A.3.40)

For the specific case of a graph (x, y, f(x, y)), the tangent plane to the surface is spanned by (1, 0, fx)

and (0, 1, fy), with normal (−fx,−fy,1)√
1+f2

x+f2
y

, giving

[
E F

F G

]
=

[
1 + f2

x fxfy

fxfy 1 + f2
y

]
, (A.3.41)

[
e f

f g

]
=

1√
1 + f2

x + f2
y

[
fxx fxy

fxy fyy

]
. (A.3.42)

Thus, given that EG− F 2 = 1 + f2
x + f2

y , we have

W =
1

(1 + f2
x + f2

y )
3
2

[
1 + f2

y −fxfy

−fxfy 1 + f2
x

][
fxx fxy

fxy fyy

]
, (A.3.43)

=
1

(1 + f2
x + f2

y )
3
2

[
(1 + f2

y )fxx − fxfyfxy (1 + f2
y )fxy − fxfyfyy

−fxfyfxx + (1 + f2
x)fxy −fxfyfxy + (1 + f2

x)fyy

]
.

The eigenvalues of a matrix of the form 1
e

[
a b

c d

]
satisfy the quadratic equation e2λ2−e(a+d)λ+

(ad− bc) = 0, which in this case gives

(1 + f2
x + f2

y )3λ2 − (1 + f2
x + f2

y )
3
2 [(fxx + fyy) + f2

y fxx − 2fxfyfxy + f2
xfyy]λ

+ [((1 + f2
y )fxx − fxfyfxy)((1 + f2

x)fyy − fxfyfxy)−
((1 + f2

y )fxy − fxfyfyy)((1 + f2
x)fxy − fxfyfxx)] = 0. (A.3.44)

The last term can be simplified as follows

ad− bc = (1 + f2
x)(1 + f2

y )fxxfyy + f2
xf

2
y f

2
xy − (1 + f2

x)(1 + f2
y )f2

xy − f2
xf

2
y fxxfyy

= (1 + f2
x)(1 + f2

y )(fxxfyy − f2
xy)− f2

xf
2
y (fxxfyy − f2

xy)

= (1 + f2
x + f2

y )(fxxfyy − f2
xy).

The quadratic Equation A.3.44 can now be simplified as

(1 + f2
x + f2

y )2λ2 − (1 + f2
x + f2

y )
1
2 [(fxx + fyy) + (f2

y fxx − 2fxfyfxy

+ f2
xfyy)]λ+ (fxxfyy − f2

xy) = 0 , (A.3.45)
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where the solutions for λ are the principal curvatures κ1 and κ2. The mean curvature H, half the

sum of the two eigenvalues H = (κ1 + κ2)/2, can be written as

H =
(fxx + fyy) + (f2

y fxx − 2fxfyfxy + f2
xfyy)

2(1 + f2
x + f2

y )
3
2

. (A.3.46)

Similarly, the Gaussian curvature K, the product of the two eigenvalues K = κ1κ2, can be written

as

K =
2(fxxfyy − f2

xy)
(1 + f2

x + f2
y )2

. (A.3.47)

We can then write from 



κ1 + κ2

2
= H

κ1κ2 = K ,
(A.3.48)

a single equation κ1(2S − κ1) = K or

κ2
1 − 2Sκ1 +K = 0 , (A.3.49)

which gives the result. The Eigenvectors can then be expressed as
[
−b

a− eλ

]
=

[
fxfyfyy − (1 + f2

x)fxy

(1 + f2
y )fxx − fxfyfxy − (1 + f2

x + f2
y )3/2 κ1

]
(A.3.50)

¥

A.4 Useful identities for reference

Vector product identities

a× (b× c) = (a · c)b− (a · b)c (A.4.1)

Two other identities follow from the above one:

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) (A.4.2)

(a× b)× (c× d) = [abd]c− [abc]d, (A.4.3)

where the latter expression indicates that for the intersection of two planes, the commmon vector v

is in both planes.

‖a× b‖2 + (a · b)2 = ‖a‖2 · ‖b‖2 (A.4.4)

If A is a linear map, then

Aa×Ab = detA(a× b) (A.4.5)



Appendix B

Multiview Differential Geometry of

Surfaces

In this Appendix we present a preliminary study and theoretical results on the local differential

geometry of surfaces in multiple views, including surface-induced image flow and the multiview

behavior of shading. Appendix A reviews useful background material related to the differential

geometry of surfaces.

B.1 Notation

The object local coordinate system is defined to be centered at a select point on the surface of the

object, Γc(0) = ρc(0) [ξc(0), ηc(0), 1]>, and with the direction z̄ aligned with the surface normal and

with x̄ and ȳ defined as the direction of principal curvatures κ1 and κ2, assuming they are different

from each other (non-umbilical points), and such that the resulting coordinate system has same

orientation as the camera coordinate system.

A point in local coordinates is hence denoted Γ = [x̄, ȳ, z̄]>. The object surface near the origin

Γc = [0, 0, 0]> is then described in Monge patch form as:

z̄ =
1
2
κ1x̄

2 +
1
2
κ2ȳ

2 + · · · (B.1.1)

We define the curvature matrix K as:

K =



−κ1 0 0

0 −κ2 0

0 0 0


 , (B.1.2)

which is the canonical matrix for a paraboloid, and write (B.1.1) as

e>3 Γ +
1
2
Γ
>
KΓ + · · · = 0 (B.1.3)
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Figure B.1: Projection of a quadric in images.

where we use the notation

e1 =




1

0

0


 e2 =




0

1

0


 e3 =




0

0

1


 . (B.1.4)

Later in this chapter we assume the object can locally be approximated by truncating the above

equation to second-order, obtaining a special quadric surface model M. This second-order surface

approximation is an elliptic paraboloid if κ1κ2 > 0, a hyperbolic paraboloid if κ1κ2 < 0, or a plane

if κ1 = κ2 = 0. The 3D points written in the camera coordinates at time t can be written in terms

of the Monge patch coordinates as in Figure B.1,

Γ(t) = R(t)Γ(t) + T (t) (B.1.5)

where

R(t) = R(t)R0 (B.1.6)

T (t) = R(t)T 0 + T (t) (B.1.7)

We also have the following notation:

R0 =



a1 a2 a3

b1 b2 b3

c1 c2 c3


 T (t) =



T x

T y

T z


 . (B.1.8)

The unit normal N = (Nx, Ny, Nz) to the surface, written in camera coordinates, is determined

by the slant and tilt angles (more later). The world coordinates for the normal will be denoted Nw,

and we can write N = RNw.
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(a) (b)

Figure B.2: (a) Spherical coordinates used in this text, and (b) The orientation of a (tan-
gent) plane with respect to the camera plane can be given by the slant – which is the angle
between the normal of the plane and the viewing direction – and the tilt – which is the angle
the projected normal makes with the x-axis of the camera coordinate system (from [55]).

The third column of the rotation matrix R(t) is the normal N written in camera coordinates at

time t:

N(t) = R(t)e3 (B.1.9)

where e3 is the normal in local coordinates of the surface patch. Therefore, only two angles, e.g.

slant σ and tilt ν , appear in the third column. The first two columns are the camera coordinates

of unit vectors along the x̄, and ȳ directions, and this is completely defined by the normal and an

in-plane rotation ψ. This is given in more details as follows. The surface normal may be described

in terms of slant σ and tilt ν,

N = (cos ν sinσ, sin ν sinσ, cosσ)> , (B.1.10)

see Figure B.2(b).

We define ψ as the in-plane rotation of the local x and y axes with respect to a predefined refer-

ence coordinate frame of the tangent plane. We now derive an explicit expression for this reference

coordinate frame in terms of the camera frame, with the intention of deriving a parametrization of

the rotation matrix by the angles σ, ν, ψ. The reference frame for measuring ψ, denoted eN
1 , e

N
2 , is

conveniently defined with respect to the camera frame: eN
1 is the orthogonal projection of e1 onto

the tangent plane with normal N, and eN
2 is choosen to form a right-handed frame (eN

1 ,e
N
2 ,N).

This can be written analytically as: 



eN
2
.= N× e1

eN
1
.= eN

2 ×N,
(B.1.11)
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which allows us to express the local x and y direction vectors ē1 and ē2, respectively, as:




ē1 = cosψ eN
1 + sinψ eN

2 + 0N

ē2 = sinψ eN
1 − cosψ eN

2 + 0N.
(B.1.12)

Using (B.1.10) into (B.1.11), we can write the reference vectors in terms of σ and ν




eN
2 = (0, cosσ,− sin ν sinσ)>

eN
1 =

(− sin2 ν sin2 σ − cos2 σ, sin ν sinσ,− cosσ
)>
,

(B.1.13)

which we plug into (B.1.12) to yield the principal directions in terms of σ, ν, and ψ:

ē1 =



− cosψ sin2 ν sin2 σ − cosψ cos2 σ

sinψ sin ν sinσ − cosψ cosσ

− cosψ cosσ − sinψ sin ν sinσ


 , ē2 =



− sinψ sin2 ν sin2 σ − sinψ cos2 σ

sinψ sin ν sinσ − cosψ cosσ

− sinψ cosσ + cosψ sin ν sinσ


 , (B.1.14)

written in camera coordinates. Then, a point Γ(0) is related to Γ as

Γ(0) = R0Γ + T 0, (B.1.15)

where

R0 =



− cosψ sin2 ν sin2 σ − cosψ cos2 σ − sinψ sin2 ν sin2 σ − sinψ cos2 σ cos ν sinσ

sinψ sin ν sinσ − cosψ cosσ sinψ sin ν sinσ − cosψ cosσ sin ν sinσ

− cosψ cosσ − sinψ sin ν sinσ − sinψ cosσ + cosψ sin ν sinσ cosσ


 ,

(B.1.16)

and T 0 =
(T x, T y, T z

)>
. Note that the first two columns of the camera matrix are the principal

direction vectors written in camera coordinates and the third column is the normal in camera

coordinates, all parametrized by σ, ν and ψ.

Proposition B.1.1. Given a paraboloid 1
2Γ

>
KΓ + e>3 Γ = 0 in the coordinate system defined by

Γ0 = R0Γ0+T , and a camera motion defined by R(t) and T (t). Then, the equation of the paraboloid

in camera coordinates is given by:

Γ>KcΓ− 2T >KcΓ + e>3 R
>
Γ + T >KcT − e>3 R

>T = 0 . (B.1.17)

where Kc = 1
2RKR

>
, K is the principal curvature matrix of the surface as defined in Equa-

tion (3.6.8), R = R(t)R0, and T = R(t)T 0 + T (t).

Proof. The main equations are:




1
2
Γ
>
KΓ + e>3 Γ = 0 (second-order surface model)

Γ0 = R0Γ + T 0 (Monge to camera coordinates at t = 0)

Γ(t) = R(t)Γ0 + T (t) (camera coordinates at time t)

Γ(t) = ρ(t)γ(t) (projection equation)

(B.1.18)

(B.1.19)

(B.1.20)

(B.1.21)
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We have from (B.1.19) and (B.1.20)

Γ(t) = R(t)R0Γ +R(t)T 0 + T (t)

= RΓ + T , (B.1.22)

giving

Γ = R(t)>Γ(t)−R(t)>T (t) . (B.1.23)

Substituting this into the above equation (B.1.18) (for simplicity, the dependency on t will not be

written), we have

1
2

[
R
>
Γ−R

>T
]>

K
[
R
>
Γ−R

>T
]

+ e>3
[
R
>
Γ−R

>T
]

= 0 , (B.1.24)

or

1
2

[
Γ− T ]>

RKR
> [

Γ− T ]
+ e>3 R

> [
Γ− T ]

= 0 . (B.1.25)

Using Kc := 1
2RKR

>
, distributing, and rearranging, we get the final equation. ¥

We are interested in an image neighborhood around a given center point γc(0) = [ξc(0), ηc(0), 1]>

at t = 0. The paraboloid approximation would then be around the 3D point Γc(0) = [xc(0), yc(0), zc(0)]>,

with the notation Γc(t) := ρc(t)γc(t). In local coordinates, Γc(0) corresponds to Γ = [0, 0, 0]>,

which, when plugged into (B.1.5), yields:

Γc(0) = T (0) = T 0 (B.1.26)

It is then clear that T (t) is the coordinates of the origin of the Monge patch with respect to the

camera coordinates at time t. From (B.1.7), we can write:

T (t) = R(t)Γc(0) + T (t) (B.1.27)

T (t) = R(t)ρc(0)γc(0) + T (t) (B.1.28)

Note that T (t) 6= Γc(t), because Γc was defined with respect to the center of the image patch, γc,

which for any t 6= 0 will not correspond to the origin of the 3D monge patch. Thus, given the image

point γc(0) at t = 0, the translation to the Monge patch is determined from a single number ρc(0),

so in total we need 6 parameters to determine our local surface model:

M = {ρc(0), σ, ν, ψ, k1, k2} (B.1.29)

B.2 Differential Relations: Rigid, Stationary Surface

We now address how the image of a neighborhood of a point moves as the camera moves. The

neighborhood is first assumed to arise from a smooth surface patch which we locally approximate

as a second-order Monge patch around a central point Γc(0) = Γc,0 = ρc,0γc,0 = ρc,0(ξc,0, ηc,0, 1)>.

We will also consider the special case of a planar patch.
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Theorem B.2.1. (Relating normal and depth gradient) Let γ be the projection of a 3D point Γ

lying on a surface with normal N. Then, when N · γ 6= 0, N and ∇ρ
ρ are uniquely related as





N =

(
−∇ρ

ρ
(N · γ),

√
1− (N · γ)2

‖∇ρ‖2
ρ2

)

∇ρ
ρ

= − (Nx, Ny)
N · γ ,

(B.2.1)

(B.2.2)

Proof. Equation B.2.1 is derived from:

N ·N = 1 (B.2.3)

(Nx,Ny) · (Nx,Ny) + N2
z = 1. (B.2.4)

Using (B.2.2),
∇ρ
ρ

= − (Nx, Ny)
N · γ , (B.2.5)

we have

(N · γ)2
‖∇ρ‖2
ρ2

+ N2
z = 1, (B.2.6)

so that

N2
z = 1− (N · γ)2

‖∇ρ‖2
ρ2

. (B.2.7)

from which the result follows.

We would like to express ∇ρ = (ρξ, ρη) explicitly in terms of the first-order surface geometry,

which can be represented by the normal N. Note that the surface under consideration is not

(ξ, η, ρ(ξ, η)), but rather Γ(ξ, η) = (ρ(ξ, η)ξ, ρ(ξ, η)η, ρ(ξ, η)). The expression for N in terms of ∇ρ
is trivial – just compute the derivatives of Γ = ργ with respect to ξ, η, take their cross product

and normalize. However, in order to have the normal explicit in our Equation (3.6.1), we need the

inverse, namely ∇ρ in terms of N. Differentiating Γ = ργ we have




Γξ = ρξγ + ργξ = ρξγ + ρe1

Γη = ρηγ + ργη = ρηγ + ρe2 .

We can isolate ρξ and ρη by taking the scalar product with N




0 = ρξN · γ + ρe1 ·N
0 = ρηN · γ + ρe2 ·N ,

(B.2.8)

which gives 



ρξ = − ρ

N · γ Nx

ρη = − ρ

N · γ Ny

(B.2.9)

¥
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The velocity vector field specified in Equation 3.5.14 is for a fixed 3D point and depends on the

global1 camera motion parameters Ω(t) and V(t) (six numbers for each time) and, assuming this

point lies on a surface, locally on depth ρ(ξ, η). Thus, all variations of u and v with respect to the

spatial variables ξ and η at a fixed time t arise entirely from variations in depth ρ(ξ, η), which itself

arises from the local shape of the object, as the next theorem shows. This motivates us to relate the

spatial derivatives of χ = (u, v) to those of ρ, as in the theorems that follow.

Proposition B.2.2. (Depth and surface geometry) Given a paraboloid 1
2Γ

>
KΓ + e>3 Γ = 0 in the

local coordinate system defined by Γ0 = R0Γ0 + T , and a camera motion defined by R(t) and T (t),

then the depth ρ(ξ, η) satisfies the equation

(
γ>Kcγ

)
ρ2 +

(
e>3 R

>
γ − 2T >Kcγ

)
ρ+

(
T >KcT − e>3 R

>T
)

= 0 , (B.2.10)

where Kc = 1
2RKR

>
, K is the principal curvature matrix of the surface as defined in Equa-

tion (3.6.8), R = R(t)R0, and T = R(t)T 0 + T (t).

Proof. Using Γ = ργ in Equation B.1.17, we have the result. ¥

Theorem B.2.3. (Spatial variation of the image velocity field in terms of surface). Consider

an image point γ arising from Γ lying on a twice-differentiable surface with normal N and having

Weingarten map Kc in camera coordinates, under differential camera motion Ω,V. Then the velocity

γt = (u, v, 1)> has spatial variation given by Equation 3.6.1:




γξt = (−V + Vzγ)
ρξ

ρ2
− Vz

ρ
e1 + Ω×e1 + Ωyγ − (e>3 Ω×γ)e1

γηt = (−V + Vzγ)
ρη

ρ2
− Vz

ρ
e2 + Ω×e2 + Ωxγ − (e>3 Ω×γ)e2.

(B.2.11)

Similarly, the second-order spatial derivatives of the image flow (u, v) are given by (3.6.2):




uξξ = (−Vx + Vzξ)
ρξξ

ρ2
− 2(−Vx + Vzξ)

ρ2
ξ

ρ3
+ Vz

ρξ

ρ2
+ 2Ωy

uξη = (−Vx + Vzξ)
ρξη

ρ2
− 2(−Vx + Vzξ)

ρξρη

ρ3
+ Vz

ρη

ρ2
+ Ωx

uηη = (−Vx + Vzξ)
ρξξ

ρ2
− 2(−Vx + Vzξ)

ρ2
η

ρ3

vξξ = (−Vy + Vzη)
ρξξ

ρ2
− 2(−Vy + Vzη)

ρ2
ξ

ρ3

vξη = (−Vy + Vzη)
ρξη

ρ2
− 2(−Vy + Vzη)

ρξρη

ρ3
+ Vz

ρξ

ρ2
+ Ωy

vηη = (−Vy + Vzη)
ρηη

ρ2
− 2(−Vy + Vzη)

ρ2
η

ρ3
+ Vz

ρη

ρ2
+ 2Ωx

(B.2.12)

1Global in the sense that the parameters are shared by all pixels. Thus their estimation at different
points does not introduce new unknowns.
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where the normalized gradient of depth is given by:

∇ρ
ρ

= − (Nx, Ny)
N · γ , (B.2.13)

(observe that for an occluding contour, N · γ = 0, the gradient of depth blows up) and the Hessian

of depth is given by




ρξξ =
2γ>Kcγρ

2N2
x

(N · γ)3
+

[
4ργ>Kce1 + 2Nx

]
ρNx

(N · γ)2
+

2e>1 Kce1ρ
2

N · γ

ρηη =
2γ>Kcγρ

2N2
y

(N · γ)3
+

[
4ργ>Kce2 + 2Ny

]
ρNy

(N · γ)2
+

2e>2 Kce2ρ
2

N · γ

ρξη =
2γ>Kcγρ

2NxNy

(N · γ)3
+

[
2ργ>Kce2 + Ny

]
ρNx +

[
2ργ>Kce1 + Nx

]
ρNy

(N · γ)2
+

2e>2 Kce1ρ
2

N · γ
(B.2.14)

where Kc = 1
2RKR

>
, K is the principal curvature matrix of the surface as defined in Equa-

tion (3.6.8), R = R(t)R0, and T = R(t)T 0 + T (t).

Proof. For the first-order image motion field, Use the general Equation 3.5.54 for an image curve

given in Theorem 3.5.11, where here the image curve is taken to be along one of the coordinate axes,

so that the parameter s can be taken as ξ or η. The formula admits the specific form given in this

theorem, by observing that γξ = e1 and γη = e2.

The second spatial derivatives of ρ are computed by considering an explicit osculating paraboloid

equation as in the next section. We can then differentiate Equation (B.2.10) with respect to ξ, η and

evaluate the result at the center point, to get:

ρξξ =

[
4ργ>Kce1 + 2Nx

]
ρξ + 2γ>Kcγρ

2
ξ + 2e>1 Kce1ρ

2

N · γ (B.2.15)

ρηη =

[
4ργ>Kce2 + 2Ny

]
ρη + 2γ>Kcγρ

2
η + 2e>2 Kce2ρ

2

N · γ (B.2.16)

ρξη =

[
2ργ>Kce2 + Ny

]
ρξ +

[
2ργ>Kce1 + Nx

]
ρη + 2γ>Kcγρηρξ + 2e>2 Kce1ρ

2

N · γ , (B.2.17)

where Kc = 1
2R0KR

>
0 and ρξ, ρη are given by (B.2.2). Substituting the above values into (3.6.2),

we get the desired second-order derivatives of flow.

¥

Proposition B.2.4. The depth ρ is related to slant angle σ by

tanσ =
‖∇ρ‖
ρ

. (B.2.18)

The second-order variation of flow is computed in a similar way. Thus, the second-order variation

of the velocity vector field is a function of the six global motion parameters (Ω,V), the depth ρ at

(ξ, η), the depth gradient ∇ρ = (ρξ, ρη) (which are derived from the normal to the surface), and

finally, the depth Hessian

Hessian =

[
ρξξ ρξη

ρηξ ρηη

]
. (B.2.19)
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We related the Hessian to the principal curvatures κ1, κ2 and the angle of the larger principal

curvature with the x-axis. Thus, six shape variables, the depth ρ, the depth surface normal (2) and

the surface curvature (3), together with the six motion parameters determine up to the second-order

variation of the velocity vector field.

Remark B.2.1. We can write Equation B.2.10 more explicitly as:

q1x
2 + q2y

2 + q3z
2 + q4xy + q5xz + q6yz + q7x+ q8y + q9z + q10 = 0, (B.2.20)

where the coefficients qi for t = 0 are given in Section B.5. Substituting equation (B.1.21), we have:

q1ξ
2ρ2 + q2η

2ρ2 + q3ρ
2 + q4ξηρ

2 + q5ξρ
2 + q6ηρ

2 + q7ξρ+ q8ηρ+ q9ρ+ q10 = 0, (B.2.21)

or, by grouping ρ:

(
q1ξ

2 + q2η
2 + q4ξη + q5ξ + q6η + q3

)
ρ2 + (q7ξ + q8η + q9) ρ+ q10 = 0. (B.2.22)

If we had q10 = 0 (a similar case as Shashua’s paper), we could trivially solve for ρ(ξ, η). However,

in our case, we prefer not to solve this explicitly, as it would lead to square roots. Rather, we keep

this equation as our model constraint on ρ(ξ, η).

Remark B.2.2. Plugging ρ0 from (3.5.15), into the model equation (B.2.22), we will have one

polynomial equation in ξ, η, u, v, at t = 0. It is quadratic in u, giving two possible solutions. For

each of these, the epipolar constraint gives one v, so we have two possible solutions for u and v.

Instead of expressing these solutions explicitly, we keep the epipolar equation and the model equation

to be solved jointly with correspondence constraints such as optical flow.

Corollary B.2.5. (planar flow) The image motion field induced by a plane is given by:



u = (h1ξ

2 + h2ξη + h3ξ + h4η + h5)/h6

v = (h2η
2 + h1ξη + h7ξ + h8η + h9)/h6

(B.2.23)

where the coefficients hi are listed in Section B.5.

Proof. Setting κ1 = κ2 = 0 in Equation (B.2.10), we get
(
e>3 R

>
γ
)
ρ−

(
e>3 R

>T
)

= 0 , (B.2.24)

and, isolating ρ,

ρ =
e>3 R

>T
e>3 R

>
γ
. (B.2.25)

Plugging into the flow equations (3.5.14), we have the desired result. ¥
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B.3 Shape from Spatio-Temporal Shading

Let us assume that an image patch Ω around (ξc, ηc) corresponds to surface M in space locally

approximated by a paraboloid, as in the previous section. The surface is assumed to be Lambertian

with brdf α. Moreover, we assume a point-source of light having intensity l whose position is

L = [L1, L2, L3]
> in coordinates of the camera at t = 0. The irradiance equation can be written as:

I(ξ, η) = αl
(L− Γ)
‖L− Γ‖

>
R0N (B.3.1)

where N =
[
Nx, Ny, Nz

]>
is the surface normal in local coordinates at the point inM corresponding

to (ξ, η), and Γ is the coordinates of such point in the camera frame at t = 0, and we can write

Γ = ργ. We can use the simplification that, for all ξ, η near ξc, ηc, the light direction L − Γ is

approximately L− Γc.

The photometric parameters α,L can be assumed constant within the patch Ω, or even globally.

Of course, α will change for reflectance edges and across different surfaces, while L will change in

case there are multiple light sources.

We can also define the above equation for colored light. An approximation is to use three primary

colors rgb. We would then have three light intensities lr, lg, lb, and three αr, αg, αb. Our equation

could then be written as:


Ir(ξ, η)

Ig(ξ, η)

Ib(ξ, η)


 =



αr 0 0

0 αg 0

0 0 αb






lr

lg

lb




>

(L− Γ)
‖L− Γ‖

>
R0N (B.3.2)

I(ξ, η) = αl
(L− Γ)
‖L− Γ‖

>
R0N (B.3.3)

where

α =



αr 0 0

0 αg 0

0 0 αb


 , l =



lr

lg

lb


 . (B.3.4)

We are concerned with the following problem. Given the image rgb intensity vector I, and its

derivatives Iξ, Iη, Iξξ, Iξη, Iηη, It, Iξt, Iηt, Itt measured at the image point (ξc, ηc) at time t, the goal

is to recover 20 parameters: 6 local surface parameters M within the patch Ω centered on (ξc, ηc),

6 global infinitesimal camera motion parameters Ω×, T (t) and 8 global photometric parameters ρ,

l, and L.

In order to solve such problem, it is necessary to compute the derivatives of normal, resulting in
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the following 10 equations:

I(ξ, η) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0N (B.3.5)

Iξ(ξ, η) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0Nξ (B.3.6)

Iη(ξ, η) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0Nη (B.3.7)

Iξξ(ξ, η) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0Nξξ (B.3.8)

Iξη(ξ, η) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0Nξη (B.3.9)

Iηη(ξ, η) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0Nηη (B.3.10)

It(ξ, η) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0Nt (B.3.11)

Itt(ξ, η) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0Ntt (B.3.12)

Iξt(ξ, η) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0Nξt (B.3.13)

Iηt(ξ, η) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0Nηt (B.3.14)

where we are actually interested in the case where t = 0, ξ = ξc, η = ηc, and, thus, x = 0 and y = 0.

Note we are also assuming that the light direction is constant for the whole patch, meaning L − Γ

is approximated by L− Γc(0) = L− ρc(0)γc(0), and that the derivatives of (L− Γc) are 0.

The normal can be written in local coordinates as:

N(x̄, ȳ) =

[
−k1x,−k2y, 1

]>
√
k2
1x

2 + k2
2y

2 + 1
, (B.3.15)

or, setting x = 0, and y = 0

N(0, 0) = [0, 0, 1]> = e3. (B.3.16)

The following is a summary of the above formulas, in terms of the unknowns of the problem. Their
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derivation is listed in Section B.4. At t = 0 we have:

I(ξc, ηc) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0e3 (B.3.17)

Iξ(ξc, ηc) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0KR

>
0 (ρξγc + ρce1) (B.3.18)

Iη(ξc, ηc) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0KR

>
0 (ρηγc + ρce2) (B.3.19)

Iξξ(ξc, ηc) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0

{
KR

>
0 (ρξξγc + 2ρξe1)−

[
(ρξγc + ρce1)

>
R0KKR

>
0 (ρξγc + ρce1)

]
e3

}

(B.3.20)

Iηη(ξc, ηc) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0

{
KR

>
0 (ρηηγc + 2ρηe2)−

[
(ρηγc + ρce2)

>
R0KKR

>
0 (ρηγc + ρce2)

]
e3

}

(B.3.21)

Iξη(ξc, ηc) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0





KR
>
0 (ρξηγc + ρξe2 + ρηe1)+

−
[
(ρηγc + ρce2)

>
R0KKR

>
0 (ρξγc + ρce1)

]
e3



 (B.3.22)

It(ξc, ηc) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0KR

>
0 [ρtγc − Ω×ρcγc − Tt] (B.3.23)

Itt(ξc, ηc) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0{KR>0 [ρttγc − 2Ω×ρtγc + 2Ω×Ω×ρcγc + 2Ω×Tt] (B.3.24)

−
[
(ρtγc − Ω×ρcγc − Tt)

>
R0KKR

>
0 (ρtγc − Ω×ρcγc − Tt)

]
e3}

Iξt(ξc, ηc) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0{KR>0 [(ρξtγc + ρte1)− Ω× (ρξγc + ρce1)] (B.3.25)

−
[
(ρtγc − Ω×ρcγc − Tt)

>
R0KKR

>
0 (ρξγc + ρce1)

]
e3}

Iηt(ξc, ηc) = ρl
(L− ρcγc)
‖L− ρcγc‖

>
R0{KR>0 [(ρηtγc + ρte2)− Ω× (ρηγc + ρce2)] (B.3.26)

−
[
(ρtγc − Ω×ρcγc − Tt)

>
R0KKR

>
0 (ρηγc + ρce2)

]
e3}

where the derivatives of ρ can be obtained from the model equation (B.1.25). All variables are
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evaluated at t = 0. Letting Kc = 1
2R0KR

>
0 , the derivatives of ρ at t = 0 are:

ρξ =
−e>3 R

>
0 e1ρc

e>3 R
>
0 γc

(B.3.27)

ρη =
−e>3 R

>
0 e2ρc

e>3 R
>
0 γc

(B.3.28)

ρξξ =

[
4ρcγ

>
c Kce1 + 2e>3 R

>
0 e1

]
ρξ + 2γ>c Kcγcρ

2
ξ + 2e>1 Kce1ρ

2
c

e>3 R
>
0 γc

(B.3.29)

ρηη =

[
4ρcγ

>
c Kce2 + 2e>3 R

>
0 e2

]
ρη + 2γ>c Kcγcρ

2
η + 2e>2 Kce2ρ

2
c

e>3 R
>
0 γc

(B.3.30)

ρξη =

[
2ρcγ

>
c Kce2 + e>3 R

>
0 e2

]
ρξ +

[
2ρcγ

>
c Kce1 + e>3 R

>
0 e1

]
ρη + 2γ>c Kcγcρηρξ + 2e>2 Kce1ρ

2
c

e>3 R
>
0 γc

(B.3.31)

ρt =
e>3 R

>
0 (Ω×ρcγc + Tt)

e>3 R
>
0 γc

(B.3.32)

ρξt =
−1

e>3 R
>
0 γc




[
2γ>c Kce1ρc + e>3 R

>
0 e1

]
ρt+

−
[
e>3 R

>
0 Ω×γc + T >t 2Kcγc

]
ρξ + 2γ>c Kcγcρtρξ −

[
e>3 R

>
0 Ω×e1 + T >t 2Kce1

]
ρc




(B.3.33)

ρηt =
−1

e>3 R
>
0 γc




[
2γ>c Kce2ρc + e>3 R

>
0 e2

]
ρt+

−
[
e>3 R

>
0 Ω×γc + T >t 2Kcγc

]
ρη + 2γ>c Kcγcρtρη −

[
e>3 R

>
0 Ω×e2 + T >t 2Kce2

]
ρc




(B.3.34)

ρtt =
1

e>3 R
>
0 γc


 −2γ>c Kcγcρ

2
t − 2

[
e>3 Ω×R0γc − T

>
t 2Kcγc

]
ρt+

+2γ>c Ω×KcΩ×γcρ
2
c − 2T >t KcT t − 2ρcγ

>
c Ω×KcT t + 2e>3 Ω×R0T t


 (B.3.35)

where

T t = (Ω×ρcγc + Tt) , and T̈ = T̈ (B.3.36)

Eliminating variables αl The term αl
‖L−ρcγc‖ appears in all equations. We can eliminate it, at

least in the monochromatic case, using the first equation to solve for it, ending up with 9 remaining

equations. From (B.3.17) and any other equation of the form:

Ixx = αl
(L− ρcγc)
‖L− ρcγc‖

>
R̄0Nxx (B.3.37)
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(where we denote by Ixx and Nxx any of the derivatives of I and N, resp.) we can cross-multiply

and get:

Iαl
(L− ρcγc)
‖L− ρcγc‖

>
R̄0Nxx = Ixxαl

(L− ρcγc)
‖L− ρcγc‖

>
R̄0e3 (B.3.38)

I(L− ρcγc)
>R̄0Nxx = Ixx(L− ρcγc)

>R̄0e3 (B.3.39)

thus

(L− ρcγc)
>R̄0

[
Ixxe3 − INxx

]
= 0 (B.3.40)

L>R̄0

[
INxx − Ixxe3

]− ρcγ
>
c R̄0

[
INxx − Ixxe3

]
= 0 (B.3.41)

Now, 3 such equations yield L in terms of all other unknowns. Since L is global, we can pick such

equations from different patches, so all other patches will still have all 9 equations to work with.

B.3.1 Considering Intrinsic Parameters

In practice, we cannot measure normalized image coordinates directly γ = [ξ, η, 1]>, but only in

terms of image pixel coordinates γim = [xim, yim, 1]>. Let the intrinsic parameter matrix be Kim:

Kim =



αξ s ξo

0 αη ηo

0 0 1


 (B.3.42)

Then we have:

γim = Kimγ (B.3.43)

γ = K−1
im γim (B.3.44)

That is how one transforms from image pixel coordinates to normalized image coordinates. More

explicitly, 



ξ =
1
αξ
xim − s

αξαη
yim +

sη0
αξαη

− ξ0
αξ

η =
1
αη
yim − η0

αη
,

(B.3.45)

(B.3.46)

with

K−1
im =




1
αξ

− s
αξαη

sη0
αξαη

− ξ0
αξ

0 1
αη

− η0
αη

0 0 1


 (B.3.47)



161

The derivatives are:

Iξ = αξIxim (B.3.48)

Iη = sIxim + αηIyim (B.3.49)

Iξξ = α2
ξIximxim

(B.3.50)

Iξη = αξsIximxim + αξαηIximyim (B.3.51)

Iηη = s2Iximxim
+ 2sαηIximyim

+ α2
ηIyimyim

(B.3.52)

So one must first go through these formulas before using main ones which require normalized image

coordinates.

B.4 Derivation of the Shading Differential Equations

In this supplementary section we derive the shading equations listed in Section B.3.

Theorem B.4.1. The derivatives of normal corresponding to the image point γc at t = 0 are:

Nξ = K
∂Γ̄
∂ξ

(B.4.1)

Nη = K
∂Γ̄
∂η

(B.4.2)

Nξξ = K
∂2Γ̄
∂ξ2

−
[
∂Γ̄
∂ξ

>
KK

∂Γ̄
∂ξ

]
e3 (B.4.3)

Nηη = K
∂2Γ̄
∂η2

−
[
∂Γ̄
∂η

>
KK

∂Γ̄
∂η

]
e3 (B.4.4)

Nξη = K
∂2Γ̄
∂η∂ξ

−
[
∂Γ̄
∂η

>
KK

∂Γ̄
∂ξ

]
e3 (B.4.5)

Nt = K
∂Γ̄
∂t

(B.4.6)

Ntt = K
∂2Γ̄
∂t2

−
[
∂Γ̄
∂t

>
KK

∂Γ̄
∂t

]
e3 (B.4.7)

Nξt = K
∂2Γ̄
∂t∂ξ

−
[
∂Γ̄
∂t

>
KK

∂Γ̄
∂ξ

]
e3 (B.4.8)

Nηt = K
∂2Γ̄
∂t∂η

−
[
∂Γ̄
∂t

>
KK

∂Γ̄
∂η

]
e3 (B.4.9)

Where

K =



−k1 0 0

0 −k2 0

0 0 0


 (B.4.10)
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Γ̄ξ = R̄>0 (ρξγc + ρce1) (B.4.11)

Γ̄η = R̄>0 (ρηγc + ρce2) (B.4.12)

Γ̄ξξ = R̄>0 (ρξξγc + 2ρξe1) (B.4.13)

Γ̄ηη = R̄>0 (ρηηγc + 2ρηe2) (B.4.14)

Γ̄ξη = R̄>0 (ρξηγc + ρξe2 + ρηe1) (B.4.15)

Γ̄t = R̄>0
[
ρtγc − Ω×ρcγc − Ṫ

]
(B.4.16)

Γ̄ξt = R̄>0 [(ρξtγc + ρte1)− Ω× (ρξγc + ρce1)] (B.4.17)

Γ̄ηt = R̄>0 [(ρηtγc + ρte2)− Ω× (ρηγc + ρce2)] (B.4.18)

Γ̄tt = R̄>0
[
ρttγc − 2Ω×ρtγc + 2Ω×Ω×ρcγc + 2Ω×Ṫ

]
(B.4.19)

Computing Nξ and Nη.

Nξ = Nx̄
∂x̄

∂ξ
+ Nȳ

∂ȳ

∂ξ
(B.4.20)

Now, the Rodrigues formula from differential geometry tells us that dN along a pricipal direction x̄

or ȳ is equal to −kdΓ̄, so we can write:

Nξ = −k1
∂Γ̄
∂x̄

∂x̄

∂ξ
− k2

∂Γ̄
∂ȳ

∂ȳ

∂ξ
(B.4.21)

= −k1




1

0

k1x̄



∂x̄

∂ξ
− k2




0

1

k2ȳ



∂ȳ

∂ξ
(B.4.22)

Setting x̄ = 0 and ȳ = 0, we have:

Nξ =



−k1

0

0



∂x̄

∂ξ
+




0

−k2

0



∂ȳ

∂ξ
= K

∂Γ̄
∂ξ

(B.4.23)

where

K =



−k1 0 0

0 −k2 0

0 0 0


 (B.4.24)

Which can be rewritten by the following consideration:

Γ̄ = R̄>Γ− R̄>T̄ (B.4.25)

∂Γ̄
∂ξ

= R̄>
∂Γ
∂ξ

(B.4.26)

Γ = ργ (B.4.27)

Γξ = ρξγ + ργξ (B.4.28)

= ρξγ + ρe1 (B.4.29)
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Thus, the final formula for x̄ = ȳ = 0, t = 0 is:

Nξ = KR̄>0

(
∂ρ

∂ξ
γc + ρce1

)
(B.4.30)

and, similarly

Nη = KR̄>0

(
∂ρ

∂η
γc + ρce2

)
(B.4.31)

In order to compute derivatives of ρ, we use the model equation (B.1.25). In the end of this section,

we list such derivatives necessary for the normal derivative formulas.

Computing Nξξ and Nηη. From the previous calculations, we know

Nξ = −k1
∂Γ̄
∂x̄

∂x̄

∂ξ
− k2

∂Γ̄
∂ȳ

∂ȳ

∂ξ
(B.4.32)

thus,

Nξξ =− k1
∂

∂ξ

(
∂Γ̄
∂x̄

)
∂x̄

∂ξ
− k1

∂Γ̄
∂x̄

∂2x̄

∂ξ2
(B.4.33)

− k2
∂

∂ξ

(
∂Γ̄
∂ȳ

)
∂ȳ

∂ξ
− k2

∂Γ̄
∂ȳ

∂2ȳ

∂ξ2

=− k1
∂2Γ̄
∂x̄2

(
∂x̄

∂ξ

)2

− k2
∂2Γ̄
∂ȳ2

(
∂ȳ

∂ξ

)2

(B.4.34)

− k1
∂Γ̄
∂x̄

∂2x̄

∂ξ2
− k2

∂Γ̄
∂ȳ

∂2ȳ

∂ξ2

=− k1




0

0

k1




(
∂x̄

∂ξ

)2

− k2




0

0

k2




(
∂ȳ

∂ξ

)2

(B.4.35)

− k1




1

0

k1x̄



∂2x̄

∂ξ2
− k2




0

1

k2ȳ



∂2ȳ

∂ξ2

Hence, at x̄ = ȳ = t = 0, we can write the final formula:

Nξξ = K
∂2Γ̄
∂ξ2

−
[
∂Γ̄
∂ξ

>
KK

∂Γ̄
∂ξ

]
e3 (B.4.36)

where

∂2Γ̄
∂ξ2

= R̄>0 [ρξξγc + 2ρξe1] (B.4.37)

∂Γ̄
∂ξ

= R̄>0 [ρξγc + ρce1] (B.4.38)

and ρξξ can be obtained from the model equation (B.1.25). Using straightforward analogues of the

above calculation, we arrive at the other formulae, namely:

Nηη = K
∂2Γ̄
∂η2

−
[
∂Γ̄
∂η

>
KK

∂Γ̄
∂η

]
e3 (B.4.39)
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where

∂2Γ̄
∂η2

= R̄>0 [ρηηγc + 2ρηe2] (B.4.40)

∂Γ̄
∂η

= R̄>0 [ρηγc + ρce2]

and ρξξ can be obtained from the model equation (B.1.25).

Computing Nξη.

Nξη = K
∂2Γ̄
∂η∂ξ

−
[
∂Γ̄
∂η

KK
∂Γ̄
∂ξ

]
e3 (B.4.41)

where

∂2Γ̄
∂η∂ξ

= R̄>0
∂2Γ
∂η∂ξ

= R̄>0 [ρξηγc + ρηe1 + ρξe2] (B.4.42)

∂Γ̄
∂ξ

= R̄>0 [ρηγc + ρce1] (B.4.43)

∂Γ̄
∂η

= R̄>0 [ρηγc + ρce2] (B.4.44)

and ρξη can be obtained from the model equation (B.1.25).

Time-derivatives of N. In order to take these derivatives, we keep ξ, η constant, and change

t. Then ρ has to change, due to (B.1.25), and also x̄, ȳ. We thus treat t similarly to ξ and η, taking

caution with new time-dependent parameters that now have non-zero derivatives.

Nt = −k1
∂Γ̄
∂x̄

∂x̄

∂t
− k2

∂Γ̄
∂ȳ

∂ȳ

∂t
(B.4.45)

Thus,

Nt = K
∂Γ̄
∂t

(B.4.46)

where:

Γ̄ = R̄>(Γ− T̄ ) (B.4.47)

∂Γ̄
∂t

=
∂R̄

∂t

>
(Γ− T̄ ) + R̄>

∂

∂t
(Γ− T̄ ) (B.4.48)

=
∂R̄

∂t

>
(Γ− T̄ ) + R̄>

∂Γ
∂t

− R̄>
∂T̄
∂t

(B.4.49)

and

Γ̇ = ρ̇γ + ργ̇ = ρ̇γ (B.4.50)
˙̄R = Ω×R̄0 (B.4.51)

˙̄T =
∂

∂t
[R(t)ρc(0)γc(0) + T (t)] (B.4.52)

= Ω×ρc(0)γc(0) + Ṫ (t) (B.4.53)
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thus
∂Γ̄
∂t

= −R̄>0 Ω×(Γ− T̄ ) + R̄>ρtγ − R̄>Ω×ρc(0)γc(0)− R̄>Ṫ (t) (B.4.54)

for Γ̄ = t = 0:
∂Γ̄
∂t

= R̄>0
[
ρtγc(0)− Ω×ρc(0)γc(0)− Ṫ (0)

]
(B.4.55)

The final formula for x̄ = ȳ = t = 0 is:

Nt = KR̄>0
[
ρtγc(0)− Ω×ρc(0)γc(0)− Ṫ (0)

]
(B.4.56)

where ∂ρ
∂t can also be computed from the model equation (B.1.25). Similarly,

Ntt = K
∂2Γ̄
∂t2

−
[
∂Γ̄
∂t

>
KK

∂Γ̄
∂t

]
e3 (B.4.57)

where

∂2Γ̄
∂t2

= R̄>0
[
ρttγc − 2Ω×ρtγc + 2Ω×Ω×ρcγc + 2Ω×Ṫ

]
(B.4.58)

and ρ̈ can be obtained from the model equation (B.1.25). Similarly,

Nξt = K
∂2Γ̄
∂t∂ξ

−
[
∂Γ̄
∂t

>
KK

∂Γ̄
∂ξ

]
e3 (B.4.59)

where

∂2Γ̄
∂t∂ξ

=
∂

∂t

[
R̄> (ρξγ + ρe1)

]
(B.4.60)

= ˙̄R> (ρξγ + ρe1) + R̄>
∂

∂t
(ρξγ + ρe1) (B.4.61)

= −R̄>0 Ω× (ρξγ + ρe1) + R̄> (ρξtγ + ρte1) (B.4.62)

and ρξt can be obtained from the model equation (B.1.25).

B.4.1 Derivatives of depth

Summary of formulas

ρξ =
ρce

>
1 R̄e3

γ>c R̄e3
(B.4.63)

ρη =
ρce

>
2 R̄e3

γ>c R̄e3
(B.4.64)



166

Derivation

We start with the incremental version of (B.1.25)

(γc + γ̃)>Kc (γc + γ̃) ρ̃2 +
[
(γc + γ̃)> 2Kcγ̃ + (γc + γ̃)> R̄e3

]
ρ̃+ γ̃>Kcγ̃ρ

2
c + e>3 R̄

>γ̃ρc = 0

(B.4.65)

γ>Kcγρ̃
2 +

[
γ>2Kcγ̃ + γ>R̄e3

]
ρ̃+ γ̃>Kcγ̃ρ

2
c + e>3 R̄

>γ̃ρc = 0 (B.4.66)

Note that the derivatives of ρ̃ are the same as the derivatives of ρ.

B.5 Coefficients of model in camera frame

In this supplementary section we list the coefficients hi of planar flow (B.2.23) and of the paraboloid

model (B.2.20).

Plane:

h1 =
`
c3 Ωx c1 − c3 Ωy c2 − c2

2Ωz − c2
1Ωz

´ T̄y (0)+ (B.5.1)

(c2 Ωz b2 + c3 Ωy b2 + c1 Ωz b1 − c3 Ωx b1) T̄z (0) + (b2c1 − c2b1)
˙̄Tz(0) (B.5.2)

h2 =
`
c3 Ωy c2 − c3 Ωx c1 + c2

2Ωz + c2
1Ωz

´ Tx (0)+ (B.5.3)

(−a2 Ωz c2 + c3 Ωx a1 − c3 Ωy a2 − a1 Ωz c1) Tz (0) + (c2 a1 − a2 c1)
˙̄Tz(0) (B.5.4)

h3 =(c3 Ωx b1 − c2 Ωz b2 − c1 Ωz b1 − c3 Ωy b2) Tx (0)+ (B.5.5)

(2 a2 Ωz c2 − c3 Ωx a1 + 2 a1 Ωz c1 − a3 Ωx c1 + c3 Ωy a2 + a3 Ωy c2) Ty (0)+ (B.5.6)

(−a2 Ωz b2 − a1 Ωz b1 − a3 Ωy b2 + a3 Ωx b1) Tz (0)+ (B.5.7)

(c2 b1 − b2 c1)
˙̄Tx(0) + (−b2 a1 + a2 b1)

˙̄Tz(0) (B.5.8)

h4 =(−a3 Ωy c2 − a2 Ωz c2 − a1 Ωz c1 + a3 Ωx c1) Tx (0)+ (B.5.9)
`
a2
1Ωz + a2

2Ωz + a3 Ωy a2 − a3 Ωx a1

´ Tz (0) + (a2 c1 − c2 a1)
˙̄Tx(0) (B.5.10)

h5 =(a3 Ωy b2 + a1 Ωz b1 − a3 Ωx b1 + a2 Ωz b2) Tx (0)+ (B.5.11)
`−a2

1Ωz − a2
2Ωz − a3 Ωy a2 + a3 Ωx a1

´ Ty (0) + (−a2 b1 + b2 a1)
˙̄Tx(0) (B.5.12)

h6 =(c2 b1 − b2 c1) Tx (0) + (a2 c1 − c2 a1) Ty (0) + (−a2 b1 + b2 a1) Tz (0) (B.5.13)

h7 =(−b3 Ωx c1 + b3 Ωy c2 + c2 Ωz b2 + c1 Ωz b1) Ty (0)+ (B.5.14)
`−b3 Ωy b2 − b1

2Ωz − b2
2Ωz + b3 Ωx b1

´ Tz (0) + (c2 b1 − c1 b2)
˙̄Ty(0) (B.5.15)

h8 =(−2 c1 Ωz b1 − b3 Ωy c2 − 2 c2 Ωz b2 + b3 Ωx c1 + c3 Ωx b1 − c3 Ωy b2) Tx (0)+ (B.5.16)

(a2 Ωz c2 + a1 Ωz c1 + c3 Ωy a2 − c3 Ωx a1) Ty (0)+ (B.5.17)

(a2 b3 Ωy + a2 Ωz b2 − b3 Ωx a1 + a1 Ωz b1) Tz (0) (B.5.18)

+ (a2 c1 − c2 a1)
˙̄Ty(0) + (−b2 a1 + a2 b1)

˙̄Tz(0) (B.5.19)

h9 =
`
b2
1Ωz + b3 Ωy b2 + b2

2Ωz − b3 Ωx b1

´ Tx (0)+ (B.5.20)

(−a2 b3 Ωy − a2 Ωz b2 − a1 Ωz b1 + b3 Ωx a1) Ty (0) + (−a2 b1 + b2 a1)
˙̄Ty(0) (B.5.21)
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Paraboloid:

q1 = a2
1
k1

2
+ a2

2
k2

2
(of x2) (B.5.22)

q2 = b2
1
k1

2
+ b2

2
k2

2
(of y2) (B.5.23)

q3 = c2
1
k1

2
+ c2

2
k2

2
(of z2) (B.5.24)

q4 = a1b1k1 + a2b2k2 (of xy) (B.5.25)

q5 = a1c1k1 + a2c2k2 (of xz) (B.5.26)

q6 = b1c1k1 + b2c2k2 (of yz) (B.5.27)

q7 = a3 − xca
2
1k1 − xca

2
2k2 − yca1b1k1 − yca2b2k2 − zca1c1k1 − zca2c2k2 (of x) (B.5.28)

q8 = b3 − xca1b1k1 − xca2b2k2 − ycb
2
1k1 − ycb

2
2k2 − zcb1c1k1 − zcb2c2k2 (of y) (B.5.29)

q9 = c3 − xca1c1k1 − xca2c2k2 − ycb1c1k1 − ycb2c2k2 − zcc
2
1k1 − zcc

2
2k2 (of z) (B.5.30)

q10 = q1x
2
c + q2y

2
c + q3z

2
c + q4xcyc + q5xczc + q6yczc − a3xc − b3yc − c3zc (const) (B.5.31)



Appendix C

Bundle Adjustment

C.1 Introduction

Bundle adjustment is the process of estimating cameras and 3D points by minimizing reprojection

error using a specialized iterative optimization scheme.

The description in [69] seems to be the most widely known introduction to the subject of bundle

adjustment, and forms the basis for this section, while the main reference paper in the computer

vision literature is [148]. The paper [41] also has a useful summary of the main concepts, as well as

experiments showing that bundle adjustment can be used in real-time applications as in online video

processing with great benefits. As such, it requires a good initialization, which can be challenging

to compute for many views. The key to performance is to select the right number of frames to

optimize at a time and the number of iterations to use in bundle adjustment. Even small ammounts

of bundle adjustment can be very beneficial in problems such as tracking over a large video sequence

and solving for the relative pose of camera for each frame. Bundle adjustment is important not

only for improving the accuracy of structure and motion solutions, but also to correct very harsh

error-propagating effects that would otherwise render a method useless.

The Levenberg-Marquardt algorithm is the numeric method of choice for implementing bundle

adjustment. It is a hybrid of Newton iteration and gradient descent, designed to provide faster

convergence and regularization in the case of over-parametrized problems. In this text, we use the

algorithm in several variables to provide least-squares solutions (rather than exact ones) to sets of

equations. A good reference for Levenberg-Marquardt is [127].

C.2 Basic Formulation and Methods

Consider the problem of estimating a set of parameters P ∈ RM from a set of observations Z̄ ∈ RN ,

M ¿ N , typically, related by a model Z = L(P ). The goal is to find P such that Z(P ) is as close

to Z̄ as possible, i.e., to minimize the residual prediction error ‖∆Z‖ = ‖Z̄ − Z(P )‖. This problem
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arises for example when a set of 3D points Γw
i have been reconstructed and camera parameters are

sought for each view v in the form of Rv, Tv, and possibly intrinsic parameters Kv. In this case the

observations are the image feature points γim indexed by i in each view, γ̄v
im,i, i.e.,

Z̄ =
[
γ̄v

im,i

]
, i = 1, . . . , Nv, v = 1, . . . , V. (C.2.1)

The model is a prediction in image coordinates of these features using a projection model γv
i =

Γv
i

e>3 Γv
i

= RΓw
i +Tv

e>3 Γv
i

together with a translation into pixel coordinates γv
im,i = Kvγv

i , i.e.,

Z(P ) =
[
γv

im,i

]
=

[
Kv

RvΓw
i + Tv

e>3 (RvΓw
i + Tv)

]
, (C.2.2)

where i = 1, . . . , Nv and v = 1, . . . , V . The prediction error requires a cost function f(P, Z̄) which

is typically in a more specific form of weighted sum of squares (sse) error

f(P, Z̄) = ‖Z̄ − Z(P )‖2 =
1
Z

[Z̄ − Z(P )]W [Z̄ − Z(p)]. (C.2.3)

Specifically, the residual prediction error in this case is

‖∆Z‖2 = ‖Z̄ − Z(P )‖2 = ‖[γ̄v
im,i −Kv

RvΓw
i + Tv

e>3 (RvΓw
i + Tv)

]‖2 =
∑

i,v

‖γ̄v
im,i −Kv

RvΓw
i + Tv

e>3 (RvΓw
i + Tv)

]‖2,

(C.2.4)

where W = I .

The computation of the optimal P , P ∗

P ∗ = argmin
P

f(P, Z̄) = argmin
P

‖Z̄ − Z(P )‖, (C.2.5)

is fairly simple if Z is linear in P , as this leads to a linear least squares solution. However, it is

much more typical in multiview geometry problems that, due to projection, Z(p) is nonlinear, e.g.,

Equation C.2.4, thus requiring an approximate iterative solution from a good initial estimate P0.

The intuition is that Z(P ) can be linearized or considered in quadratic form for each step from

estimate Pi to Pi+1. In the linear, first-order approximation,

f(P + ∆P ) = f(P, Z̄) +∇f>(P, Z̄)∆P, (C.2.6)

where the steepest change is that of gradient descent

λ∆P = ∇f(P, Z̄), (C.2.7)

where 1/λ is the stepsize. For the sse case this gives

λ∆P = −J>W>[Z̄ − Z(P )], (C.2.8)

where J = dZ
dP is the Jacobian. The gradient descent quickly gets the estimate close to the minimum,

but when it gets close, the gradient diminishes, and therefore the rate of convergence likewise de-

creases significantly. In this case a second-order approximation is required. Specifically, expanding

f(P, Z̄) in a Taylor expansion up to second order gives

f(P + ∆P, Z̄) = f(P, Z̄) +∇f>(P, Z̄)∆P +
1
2
∆P>H>

f (P, Z̄)∆P, (C.2.9)
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where ∇f and Hf are the gradient and the Hessian of f , respectively, with respect to P . Minimizing

f(P + ∆P, Z̄) over ∆P gives

Hf (P, Z̄)∆P = −∇f(P, Z̄). (C.2.10)

Thus, starting with P0, and iterating through

Pi+1 = Pi +H−1
f (Pi, Z̄)∇f(Pi, Z̄), i = 0, 1, 2, . . . (C.2.11)

is expected to converge to the solution P ∗. This is the well-known Newton method.

Observe, however, that the computation of Hf requires the computation of not only the Jacobian

J = dZ
dP , but also d2Z

dP 2 , which is not a trivial task. Fortunately, for the specific case of sse in the form

of Equation C.2.3 the Hessian can be approximated effectively using just the Jacobinan J . Observe

that in this case

∇f(P, Z̄) = −[Z̄ − Z(P )]>WJ, (C.2.12)

and

Hf (P, Z̄) = J>WJ − [Z̄ − Z(P )]>W
d2Z

dP 2
. (C.2.13)

Now when Z̄ − Z(p) is small or when d2Z
dP 2 is negligible the second term can be ignored, leading to

an approximate H̃f (P, Z̄),

H̃f (P, Z̄) = J>WJ. (C.2.14)

In this case, Equation C.2.10 can be written in the form

J>WJ∆P = −J>W (Z̄ − Z(P )). (C.2.15)

This is the Gaussian-Newton approximation, which is typically very effective in practice, and only

requires the computation of the Jacobian J . In our case, W = I , so that

J>J∆P = −J>(Z̄ − Z(P )). (C.2.16)

The first-order gradient descent and the second-order Gauss-Newton approximations complement

each other in that gradient descent gets the estimate close to the optimum but is ineffective in

“finishing the job” where the second-order can do this. The two can be integrated by solving

(J>J + λI )∆P = −J>[Z̄ − Z(P )], (C.2.17)

where λ = 0 gives Equation C.2.16 while for a high value of λ it gives Equation C.2.8. In this way the

update is dominated by a first-order gradient descent initially and as the estimate approaches the

minimum a second-order update is used. This procedure is referred to a as Levenberg-Marquardt.

Different strategies are used to vary λ [69, 127]. Typically, the average of the diagonal of J>J

divided by 1000 is used to set λ, so that λ dominates initially. If the resulting ∆P reduces errors,

then λ is dividied by 10 for the next iteration; otherwise, λ is multiplied by 10 and the procedure is

repeated until the cost function decreases. Therefore, it transitions smoothly from a Gauss-Newton

iteration to gradient descent and back depending on which method is more effective.

In practice, one provides a routine to compute the cost f , a goal vector of observed or desired

values, and an initial estimate of P0. The computation of the Jacobian can be done either numerically

or by providing a routine. Numerical computation usually works well.
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Figure C.1: Form of the Jacobian matrix for bundle adjustment estimating cameras and
3D points.

Sparse Levenberg-Marquardt: The bottleneck in the basic Levenberg-Marquardt algorithm

is solving for ∆P in Equation C.2.17 which in general requiresO(N3) operations, N being the number

of parameters. However, in many problems such as the optimization of cameras and 3D points, the

matrix J>J has a sparse block structure. For example, the image of a point does not depend on any

other point such that the “measurement vector” Z̄ ∈ RN may be broken into Z̄ = (Z̄>1 , . . . , Z̄
>
n )>,

and the parameter vector may be broken into P = (a>, b>1 , . . . , b
>
n )>, a sparseness assumption is that

each Zi is dependent on a and bi only, i.e., ∂Zi

∂bj
= 0, for i 6= j. In the camera and point reconstruction

problem, bi is the vector of parameters of the i-th point, and Zi the vector of projections of this

point in all the views, which does not depend on any other point being estimated. The form of the

Jacobian matrix is as in Figure C.1, where Zj
i denotes point i projected in view j.

The Jacobian has block structure

J = [A|B1|B2| . . . |Bn], where A =
[
∂Z

∂a

]
, Bi =

[
∂Z

∂bi

]
. (C.2.18)

The equations to compute the update on parameters ∆P now have the form

J∆P = [A|B]
(

∆aP

∆bP

)
= ∆Z. (C.2.19)

Other sources of sparseness are (i) the lack of interaction between parameters of different cameras

under proper formulation of the problem, and (ii) correspondences are not always visible in all views.

Each step of the sparse Levenberg-Marquardt implementation is O(N) in the number of parameters.

Hartley and Zisserman [69] list the algorithm in detail.

Large-scale bundle adjustment: Recently, authors have applied bundle adjustment for re-

constructing cameras and 3D points for entire cities, comprising almost a million cameras. In this

case, instead of sparse Levenberg-Marquardt, some authors have resorted to the conjugate gradient

method in order to optimize all cameras and all points simultaneously. This approach allows for

optimizing a very large system of equations, at the cost of being slower than Levenberg-Marquardt.
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Iterative Fundamental Matrix Estimation: There is a method for fundamental matrix

estimation using Levenberg-Marquardt. It basically is the multiview bundle adjustment algorithm,

but for pairs of cameras. The first camera is assumed to be [I|0], and the second one is estimated

iteratively, together with 3D points. The result is cameras and points up to projective ambiguity,

but this is equivalent to the fundamental matrix. If the second camera has matrix [M |m], then the

fundamental matrix is [m]×M . This is sometimes called bundle adjustment, although this is not

strict terminology since a specialized sparse implementation of Levenberg-Marquardt is not required.



Appendix D

Geometric and Qualitative

Approach to Epipolar Geometry

This chapter presents material from ongoing research on qualitative and geometric aspects of epipo-

lar geometry estimation for use in automatic structure from motion systems. It has more of an

experimental and open-ended flavor than the rest of this thesis, so it was made into an appendix.

D.1 Introduction

D.1.1 Motivation and Outline

Reconstruction of 3D structure and cameras from a number of 3D views has always been one of the

central problems in computer vision, called structure from motion, and is the major topic of this

thesis. A burst of research has occurred since the 90’s, when projective methods enabled reconstruc-

tion with little prior on the intrinsic parameters. Moreover, improved interest point detectors and

local descriptors more recently enabled wider application of reconstruction systems without need to

first solve the segmentation problem. These advances have enabled highly flexible systems, but this

comes at the price of poor accuracy of the results (for traditional photogrammetric standards), due

to instability when dealing with noisy input [118] under weak assumptions. Moreover, in some cases

there might be a lack of sufficient point features for a stable camera estimation, but there is still

enough curve content which hasn’t been exploited by state-of-the-art systems.

Given features detected in two images, current systems for automatic 3D calibration and recon-

struction usually consist in:

i) Initial matching of sparse features to bootstrap the system

ii) Simultaneous recovery epipolar geometry and consistent correspondences

iii) Projective reconstruction of cameras and sparse features,
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iv) Auto-calibration and Euclidean reconstruction,

v) Dense matching and reconstruction.

Epipolar geometry is the image-based representation of the relative camera pose and intrinsic

parameters between two views, and is the most important tool in all steps (ii–v). In this chapter, a

new geometric representation for epipolar geometry is proposed and studied, and a new qualitative

approach for its estimation is expored. We will focus on its use for step (ii): given interest points

detected in two images and initial correspondences containing a high percentage of outliers, the

output is an epipolar geometry most consistent with the data, and a subset of initial correspondences

consistent with the epipolar geometry.

The traditional approach for robust estimation of epipolar geometry is based on ransac [54,69]

and feature points such as Harris corners or sift. Basically, we start from an initial set of rough

matches between two views, which are obtained by some similarity measure of the appearance around

the feature. We then pick different subsets of correspondences (as small as possible), compute

an epipolar geometry for each, and keep the result which is most consistent with all the initial

correspondences. The key aspects of the system are: the number of correspondences in each subset,

the core algorithm to use for instantiating the epipolar geometry for a given subset, how many

subsets to try, and how to validate a particular subset. Each of these are essentially dictated by the

dataset (e.g. proportion of outliers, localization noise) and the core algorithm used within ransac

(e.g. number of points required, stability). In many applications we have little control over the data,

such as when processing videos from the internet, so we should do the best possible in choosing a

core algorithm, and our contribution is in this direction.

The ideas presented in this chapter have a long-term goal to serve as a foundation for future

research on estimating epipolar geometry from curves. The qualitative aspects exploited here can

be readily applied to curves, generating aspect graphs of solutions as first suggested by Porill and

Pollard [126]. Our research with such aspect graphs for the case of points can help identify the

feasibility of implementing such idea for the case of curves.

D.1.2 Fundamental Concepts of Epipolar Geometry

Epipolar geometry arises as an answer to the following question: Given two projected points p1 and

p2 in two views, can they correspond to the same 3D point? Let us define some basic concepts.

Definition 18. (Basic geometric entities)

• The epipolar line el21 of a point p1 in image 2, or el21(p
1) is the projection in image 2 of the

line in space of all 3D points that project to p1. We define el12(p
2) in a similar way.

• The epipole e21 of camera 1 on image 2 is the projection in image 2 of the camera center c1.

We define e12 in a similar way.

• The epipolar plane of a 3D point Γw is the plane formed by c1, c2,Γw.
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Property 1. All epipolar lines el21(p
1) necessarily pass through the epipole e21.

Proof. The set of 3D points projecting to p1 defines a straight line that has to include c1. Thus,

projecting all points of this line in image 2 includes projecting c1. ¥

Property 2. The intersection of the epipolar plane of Γw with one image plane is a line el12(el
2
1),

which is called the epipolar line of Γw, which is the epipolar line of p1(p2).

Proof. The point p1 is in el12 and also in the epipolar plane. The epipole is in el12 and also in the

epipolar plane. Thus, el12 must be the intersection of the epipolar plane and the image plane. ¥

The epipolar geometry is algebraically encoded by the fundamental matrix in the (intrinsically)

uncalibrated case, and by the Essential matrix in the calibrated case, as reviewed in the sections

to follow. The Euclidean-geometric concepts, however, are not immediately clear from the projec-

tive geometry. Instead of matrices, we could represent epipolar geometry more explicitly by two

epipoles and a mapping between a set of corresponding epipolar lines. The following questions arise:

What is the advantage of an explicit geometric representation? How do we know this is the right

representation to be used? For instance, epipoles may be at infinity; this should be treated in an

explicit geometric formulation. How to go from an essential matrix or fundamental matrix algebraic

representation to the geometric representation and vice-versa? In this chapter we investigate such

geometric representation and explore geometric interpretations to many aspects of epipolar geometry

that is usually encoded quite implicitly in the algebra.

D.1.3 The Essential Matrix

Let Γ1 be the non-homogeneous coordinates of a 3D point Γ in the 3D frame of camera 1, and Γ2 the

coordinates of the same point in camera 2. Then we can write, for some rotation R and translation

T :

Γ2 = RΓ1 + T (D.1.1)

Taking the cross-product with T on both sides, we get:

T × Γ2 = T ×RΓ1 (D.1.2)

taking the scalar product with Γ2,

Γ2 · (T ×RΓ1) = 0 (D.1.3)

Γ2>(T×R)Γ1 = 0 (D.1.4)

where R is a rotation matrix, and T× is a skew-symmetric matrix formed from the translation vector

such that T×Γ = T × Γ. The essential matrix is then given by:

E = T×R (D.1.5)
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up to a scale factor (since Equation D.1.4 is equal to zero, the scale factor makes no difference). Now,

if instead of the 3D point coordinates Γ1 and Γ2 we have the 2D point coordinates γi = (ξi, ηi, 1)>,

i = 1, 2, we can substitude Γi = ρiγi into equation (D.1.4) to get

γ2>Eγ1 = 0, where E = T×R. (D.1.6)

Some questions arise: When we know E, what constraint does E = T×R place on T or R separately?

What does this mean geometrically? How to arrive at the fact that this is exactly equivalent to

having two epipoles and a map between epipolar lines, i.e., how do we know that E fully represents

the geometry of the problem?

Epipoles and the Essential Matrix. Given an essential matrix E, the epipole e12 is defined

as the point in image 1 satisfying the epipolar constraint for all points in image 2:

γ2>Ee12 = 0, ∀γ2 in image 2, (D.1.7)

resulting in

Ee12 = 0, (D.1.8)

i.e., e12 is algebraically given by the right null-vector of E (in homogeneous coordinates). Similarly,

it can be shown that e21 is the left null-vector of E.

Interpreting the Essential Matrix First, note that the translation T is the coordinates of

point c1 in camera 2. To see this, we know that c1 is the origin of the coordinate system of camera

1, so that Γ1 = (0, 0, 0)> at c1. Since Γ2 = RΓ1 + T , we have that Γ2 = T for the point c1.

Second, the vectorRγ1 is just the vector from c1 to the image point γ1, but written in coordinates

of camera 2, as shown in Figure D.1. Therefore, T ×Rγ1 is a vector that is normal to the epipolar

plane spanned by T and the 3D point Γ2, all written in coordinates of camera 2. Thus, the equation

γ2 · T ×Rγ1 means that the vector γ2 has to lie in the epipolar plane. See Figure D.1. Since we also

have the restriction that γ2 is in the second image plane, we have that it must lie in the intersection

of two planes, and, thus, there is an epipolar line in the second image consisting of all those image

points γ2 that satisfy the epipolar constraint.

Suppose we don’t know that Γ1 and Γ2 are coordinates of the same 3D point, but we know they

satisfy the essential constraint of Equation (D.1.4). This means that their projection lines itersect

in 3D, but does not mean that they are 3D coordinates of the same point, of course. Note, however,

that two coplanar lines intersect always, except when they are parallel. The parallel case has to be

given special treatment if we use non-homogeneous coordinates.

Epipolar Constraint in World Coordinates. In our previous paper [46], all vectors were

in 3D world coordinates, and instead of attaching a 3D coordinate frame to each camera, we had

the focal vector, which models two rotation parameters, but not camera roll. Since only world
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Figure D.1: Interpretation of the essential matrix equation. All vectors are written with
respect to the 3D coordinate system of camera 2.

coordinates are being used, the epipolar constraint is even simpler and this gives insight into the

essential matrix. Let us start by relating the world point Γw to each image point:

ρ1γ1 + c1 = ρ2γ2 + c2 = Γw (D.1.9)

where Γw represents the world coordinates of the 3D point.

ρ1γ1 = ρ2γ2 + c2 − c1 (D.1.10)

(c2 − c1)× ρ1γ1 = (c2 − c1)× ρ2γ2 (D.1.11)

γ2 ·
[
(c2 − c1)× ρ1γ1

]
= 0 (D.1.12)

γ>2 (c2 − c1)×γ1 = 0 (D.1.13)

the Essential matrix is then

E = (c2 − c1)× (D.1.14)

Thus, an epipolar constraint involves the knowledge of a normal to the epipolar plane, e.g.

the epipolar plane of the given point in image 1. One component of this normal depends on the

point. The other component, however, only depends on the cameras, not on any point. It is such

camera-dependent component that is represented by the essential matrix.

D.1.4 The Fundamental Matrix

The Fundamental matrix is the analog of the Essential matrix for operating directly in image co-

ordinates, and it becomes useful when the intrinsic parameters of the cameras are unknown. The

fundamental constraint for epipolar geometry is defined by the equation:

γ2>
imFγ1

im = 0, (D.1.15)
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where γi
im, i = 1, 2 are the image points measured in image pixel coordinates and having third

coordinate 1. The fundamental matrix is given by

F = K−>
2 T×RK−1

1 , (D.1.16)

where K1 and K2 are the intrinsic parameter matrices of views 1 and 2, respectively. It is a 3 × 3

matrix with rank 2.

D.1.5 Literature Overview

In 1981, Longuet-Higgins [99] devised the essential matrix. Faugeras, Luong and others [52, 102,

106] devised the fundamental matrix in 1992, enabling the practical use of epipolar geometry for

intrinsically uncalibrated cameras. This is considered a major milestone in Computer Vision.

Methods for estimating the Fundamental matrix are traditionally feature-based [69], even for

infinitesimal motion [41]. More recently, however, a direct method (i.e. dense) for computing the

fundamental matrix under infintesimal motion has been proposed [137], which can improve results

in scenes where salient features are absent, such as blurred images or textured images with aliasing.

More information on infinitesimal epipolar geometry can be found at [104,106,151].

The idea behind the epipolar ordering constraint exploited in Section D.3 first appeared in [103],

although we arrived at this constraint prior to knowing about this reference.

D.1.6 Classic Epipolar Geometry Estimation

The Normalized 8-point Algorithm

Outline. The 8 point algorithm involves the least-squares solution of a linear system of equations

assuming the fundamental matrix as having general entries. The result is outside the space of

fundamental matrices (which is the space of rank-2 matrices), so the algorithm finishes by projecting

the solution back to this space. The data points have to be normalized and scaled such that the

centroid of the reference points is at the origin of image coordinates, and the rms distance of the

points from the origin is equal to
√

2. Normalization is necessary to improve the conditioning of the

underlying linear system, thus improving the stability of the estimation.

By giving sufficiently many point matches γi,γ
′
i, we can compute the unknown matrix F from

the fundamental constraint, Equation D.1.15. Each pair of matching points gives one equation in

the entries of F :

ξ′ξf11 + ξ′ηf12 + ξ′f13 + η′ξf21 + η′ηf22 + η′f23 + ξf31 + ηf32 + f33 = 0. (D.1.17)

Denote by f the 9-vector made up of the entries of F in row-major order. Then we can express the

equation as:

(ξ′ξ , ξ′η , ξ′ , η′ξ , η′η , η′ , ξ , η , 1)f = 0. (D.1.18)
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From a set of m point matches, we obtain a linear system of equations of the form:

Af =



ξ′1ξ1 ξ′1η1 ξ′1 η′1ξ1 η′1η1 η′1 ξ1 η1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξ′mξm ξ′mηm ξ′m η′mξm η′mηm η′m ξm ηm m


 f = 0. (D.1.19)

This is a homogeneous set of equations, and f can only be determined up to scale. For a solution

to exist, matrix A must have rank at most 8, and if the rank is exactly 8, then the solution is unique

(up to scale), and can be found by linear methods that solve for the right-null vector of A.

If the data is not exact, because of noise in the point coordinates, then we find a least-squares

solution, which is found by minimizing ‖Af‖ subject to ‖f‖ = 1. It can be shown that the desired f

is just the singular vector corresponding to the smallest singular value of A, that is, the last column

of V in the svd of A written as UDV >.

So far, we have not enforced that the fundamental matrix has rank-2. This condition is equivalent

to require that all epipolar lines pass through the same point in each image – the epipoles. After

solving the above linear system, the solution is coerced to rank-2, by replacing F by the matrix F ′

that minimizzes the Frobenius norm ‖F − F ′‖ subject to the condition detF ′ = 0. A convenient

method of doing this is to again use the svd, as described in [69, p.281].

After the rank-2 coercion, the solution is de-normalized so that the resulting fundamental matrix

is expressed in the original image coordinates. Traditionally, the solution is refined using a non-linear

iterative method minimizing geometric cost.

The 7 point algorithm

Hesse was the first to give a solution to the problem of determining epipolar geometry from 7 point

correspondences [75]. His solution was neatly summarized by Sturm and later by Faugeras and

Maybank [106,107,116,142]. Hartley gave a more concise solution which is however less insightful [68,

69]. We refer to the former method as “Sturm’s approach”, and the latter as “Hartley’s approach”.

Sturm’s approach This approach has a much longer proof than Hartley’s but it contains a lot

of geometric insight. Faugeras’ paper [116] provides a method of using least squares if more than 7

points are available.

Hartley’s approach This algebraic method is attributed to Hartley [68], but a similar version

appeared in Maybank [106, p.202]. From 7 point correspondences, the equation p̄>Fp places 7

constraints on the 9 entries of the fundamental matrix F . This solves 7 of the 9 elements of F ,

therefore 2 parameters remain to be determined. Of these, only 1 dof can be determined, since the

equation is homogeneous, and it is determined by enforcing det(F ) = 0, which is a cubic, giving 1 or

3 real solutions. More formally, the solution of the equations p̄>i Fpi for i = 1, . . . , 7 gives a solution

of the form

F = µF1 + νF2. (D.1.20)
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Substituting into the equation det(F ) = 0 gives rise to a homogeneous cubic equation in the variables

µ and ν (or a non-homogeneous cubic equation in a single parameter). There will be 3 solutions in

general, but the complex ones are discarded [68].

Less than 7 points

In this case the problem becomes underconstrainted. Hesse [75] showed that if 6 point correspon-

dences are given, then the epipoles each lie on a cubic plane curve.

D.2 Geometric Approach to Epipolar Geometry

“In the abscence of a geometric interpretation, a large set of polynomial equations can be about as

informative as a block of assembler code”– Stephen Maybank

The Fundamental matrix has 7 dof (degrees of freedom), which are described in the literature

as 4 dof for the epipoles and 3 for the transformation between epipolar lines, which is shown to be a

1D homography [51,69]. However, the arguments for this are mostly algebraic, with little geometric

insight on how the 7 dof relate to the geometry of the two cameras, or the question of how is it that

only two epipoles and three corresponding epipolar lines are enough to specify the complete epipolar

geometry. Another question that motivated us is: if we know the fundamental matrix, what do we

know about the cameras? The literature tells us that there is a fundamental ambiguity, where a set

of projectively related cameras are all consistent with the same fundamental matrix. However, the

proof to this teorem is algebraic, and we wish to augment the classic knowledge with more geometric

insight.

Let us represent the epipolar geometry by two epipoles e1 and e2, a pencil of epipolar lines

through each epipole, and a mapping between the two pencils. An epipolar pencil can be represented

by a family of lines which, under a given planar coordinate system having the epipole as origin, have

equation

η = tanψ ξ (D.2.1)

where ψ is the angle of the particular line with the ξ axis, so that the pencil is parametrized by ψ.

D.2.1 Effect of Planar Transformations on Epipolar Geometry

The intrinsic parameters and in-plane rotation of an image form an affine group of transformations

on the coordinate system on an image plane. Let us analyze how each type of transformation affects

the epipolar geometry. This study sheds light on the relationship between epipolar geometry and

camera parameters. In what follows, we have a coordinate system of a plane, indicated by ξ, η. The

transformed coordinates are indicated by ξ̄, η̄. Later on, ξ, η will be given an interpretation, such as

pixel coordinates, but, for now, there is no specific interpretation.
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Scaling. Scaling of the coordinate system in two orthogonal directions is specified by σξ and ση.

The relationship between these factors and the usual intrinsic parameters in the literature will be

described further in this section. Assuming the epipole is at the origin, the scaling transformation

is written as: 


ξ̄ = σξξ

η̄ = σηη.
(D.2.2)

Using η = tanψ ξ,

η̄ = ση tanψ ξ (D.2.3)

η̄ =
ση

σξ
tanψ ξ̄. (D.2.4)

Therefore, the epipolar pencil in the scaled coorinates is given by:

η̄ = tan ψ̄ ξ̄ (D.2.5)

where

tan ψ̄ =
ση

σξ
tanψ. (D.2.6)

Note that knowledge of σξ or ση in isolation is not important, only their ratio is relevant. Moreover,

vertical and horizontal lines remain the same under scaling.

Translation. Translation occurs in practice when the epipole is given in pixels, while we need

to relate this to the camera coordinates in world units relative to the principal point. Thus, lets say

that the epipole coordinates was changed from ξ0, η0 to ξ̄0, η̄0. The angles under the new coordinates

remain the same, since

η − η0 = tanψ(ξ − ξ0) (D.2.7)

and, using η̄ = η + η̄0 − η0 and ξ̄ = ξ + ξ̄0 − ξ0, we have

η̄ − η̄0 = tanψ(ξ̄ − ξ̄0). (D.2.8)

This result is also valid for vertical lines.

Skew. As illustrated in Figure D.2, we can write:



ξ = ξ̄ + η̄ cos θ

η = η̄ sin θ.
(D.2.9)

The inverse transformation is: 


ξ̄ = ξ − η cot θ

η̄ = η csc θ.
(D.2.10)

Since we also wrote η = tanψξ, we can substitute the equations for η(ξ̄, η̄) and ξ(ξ̄, η̄) above to get:

η̄ =
tanψ

sin θ − cos θ tanψ
ξ̄ (D.2.11)
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Figure D.2: Skewed image coordinates

Skew, translation, and scaling all together. The order of transformations used in practice

is is first scaling, then skew, then translation. The following proposition gives the formula for

the entities θ, σξ, ση, ξ0, η0 describing such transformation, which we call the geometric intrinsic

parameters.

Proposition D.2.1. (Geometric intrinsic parameters and epipolar lines) Given a change of coor-

dinates of the image plane consisting of, in order, scaling, skew, and translation:



ξ̄ = σξξ + ση cot θ η + ξ̄0

η̄ = ση csc θ η + η̄0,
(D.2.12)

then the equation of a fixed pencil of lines around e = (ξe, ηe) transforms from η−ηe = tanψ (ξ−ξe)
to η̄ − η̄e = tan ψ̄ (ξ̄ − ξ̄e), where tan ψ̄ is given by:

tan ψ̄ =
ση tanψ

σξ sin θ − ση cos θ tanψ
=

tanψ
σξ

ση
sin θ − cos θ tanψ

, (D.2.13)

and (ξ̄e, η̄e) are the transformed coordinates of e.

Proof. It is clear that translation does not affect the angle of the epipolar lines, see Equation D.2.8.

Scaling affects the angles as:

tan ψ̃ =
ση

σξ
tanψ, (D.2.14)

where ψ̃ are the angles in the scaled coordinates, as shown in Equation D.2.6. A change from the

scaled coordinates to the skewed coordinates then gives:

tan ψ̄ =
tan ψ̃

sin θ − cos θ tan ψ̃
, (D.2.15)

as shown in Equation D.2.11. Plugging tan ψ̃ from (D.2.14) into (D.2.15), we obtain the desired

result. ¥



183

Note that we could first skew, then scale, but this would be different than what is used in practice

as described in Chapter 3.2. The following corolary adapts the result to the parameters used in the

literature, which we call classic intrinsic parameters.

Corollary D.2.2. (Classic intrinsic parameters and epipolar lines). Given a change of coordinates

of the image plane consisting of, in order, scaling, skew, and translation:



ξ̄ = αξξ + sθη + ξ̄0

η̄ = αηη + η̄0,
(D.2.16)

or, in the classic form using homogeneous coordinates,


ξ̄

η̄

1


 =



αξ sθ ξ̄0

0 αη η̄0

0 0 1






ξ

η

1


 (D.2.17)

then the equation of a fixed pencil of lines around e = (ξe, ηe) transforms from η−ηe = tanψ (ξ−ξe)
to η̄ − η̄e = tan ψ̄ (ξ̄ − ξ̄e), where tan ψ̄ is given by:

tan ψ̄ =
αη tanψ

αξ + sθ tanψ
=

tanψ
αξ

αη
+ sθ

αη
tanψ

, (D.2.18)

and (ξ̄e, η̄e) are the transformed coordinates of the e.

Proof. The Equations (D.2.16) and (D.2.12) describe the same transformation. Therefore, the

coefficients of ξ and η must equal:

αξ = σξ (D.2.19)

αη = ση csc θ (D.2.20)

sθ = ση cot θ. (D.2.21)

Our purpose is to obtain the factors σξ

ση
and cos θ and plug them into Equation (D.2.13). Let us

write:

σξ = αξ (D.2.22)

ση = αη sin θ (D.2.23)

cot θ =
sθ

ση
(D.2.24)

Then, after some manipulation,

σξ

ση
=

1
sin θ

αξ

αη
(D.2.25)

cos θ =
sθ

αη sin θ
(D.2.26)

Plugging these into (D.2.13), after a trivial manipulation, the result follows. ¥
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The aforementioned corolary shows that, actually, knowledge of αξ, αη, and sθ in isolation is

not necessary for the transformation of epipolar lines realized by the intrinsic parameters. Instead

of these 3 numbers, only two ratios αξ

αη
and sθ

αη
are needed. Therefore only 4 dof from the intrinsic

camera parameters affect the epipolar geometry.

In-plane rotation. Although this occurs in practice as one of the extrinsic parameters, it is

fundamentally a 2D transformation, so we can attempt to treat it separately from the other extrinsic

parameters.

D.2.2 Basic Geometric Aspects of Epipolar Homography

This section is concerned with the following questions: How does the map between epipolar lines

look like? What is its most elementary nature? We shall prove it is a homography. Moreover, how

does this map relate to the geometry of the cameras?

Theorem D.2.3. The mapping between epipolar lines is a 1D homography. More precisely, let the

epipolar geometry is represented by two epipoles e1 and e2 and epipolar lines are given by angles

α1 and α2 around the respective epipoles. If directionality is not important, i.e., only the tangents

x = tanα1 and y = tanα2 matter, then:

y =
ax+ b

cx+ d
, (D.2.27)

where a, b, c, d are arbitrary coefficients.

The coefficients a, b, c, d can be written with respect to the geometry of the camera system as

indicated in a subsequent Lemma.

Corollary D.2.4. The relationship between x = tanα1 and y = tanα2 can be given symmetrically

by an alignment hyperbola:

axy + bx+ cy + d = 0, (D.2.28)

where a, b, c, and d are arbitrary coefficients.

Lemma D.2.5. (Epipolar homography in terms of geometric parameters) The mapping between

epipolar lines is a 1D homography whose 3 dof can be written as three angles which describe the

relative geometry of an image plane relative to the first, namely two angles θ2, φ2 describing the

normal of the second plane, and one angle θ1 describing the direction of the second epipole with

respect to the normal of the first plane. If we write the 1D epipolar homography in the form:

y =
ax+ b

cx+ d
, (D.2.29)
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then we can write the coefficients a,b,c and d in terms of the three geometric parameters of the

system:

a = sin θ1 sin θ2 cosφ2(1− sin2 θ2 sin2 φ2) + (cos θ1 cos θ2)(1− sin2 θ2 sin2 φ2)

− sin θ1 sin3 θ2 sin2 φ2 − cos θ1 sin2 θ2 cos θ2 sin2 φ2 (D.2.30)

b = 2 cos θ1 cos θ2 sin2 θ2 sinφ2 cosφ2 (D.2.31)

c = sinφ2 sin θ2(cos θ1 sin θ2 cosφ2 − sin θ1 cos θ2) (D.2.32)

d = cos θ1(1− sin2 θ2 sin2 φ2). (D.2.33)

Proof. Let the two image planes be described simply as two general planes π1 and π2. An outline

of the proof is as follows:

1. The epipole e1 is any point in the plane π1.

2. The unit translation direction T 1 is any direction forming angle θ1 with the normal N1. This

direction points to the epipole e2 in the second plane. There is a cone of vectors, but this is

not important for the intrinsic configuration of two planes. So T 1 is specified by the angle θ1:

T 1 ·N1 = cos θ1 (D.2.34)

while one dof φ1 is not specified for this proof.

3. We now have a universal coodinate frame formed by the vectors N1, T⊥
1 , and T⊥

1 ×N1. Lets

choose the ordering [T⊥
1 , T⊥

1 ×N1, N1] for this basis.

4. Now specify N2 in the universal frame. Its coordinates in this frame can be given in terms of

two angles:

N2 = (cosφ2 sin θ2, sinφ2 sin θ2, cos θ2). (D.2.35)

where θ2 and φ2 are defined in Figure D.3.

5. We need to define some basis in the plane π2 that will be the reference for measuring the

angle of the epipolar lines therein. We will take as the reference to be the vector T⊥
1,2, which

is the projection of T⊥
1 in the second image, by intersecting π2 with the special epipolar plane

defined by e1T 1 and N (or T⊥
1 ). It is easier to define this special epipolar plane as the T⊥

1 N1

plane of the universal coordinate frame. This will be done shortly.

6. Now, given the unit vector v1 in the direction of an epipolar line in the first plane, we want

to get v2 as the intersection of π2 with the plane (e1T 1),v1. Let v1 be parametrized by an

angle α1 measured from the T⊥
1 direction as defined using the right-hand rule. The angle α2

parametrizing the second pencil of epipolar lines would be defined with respect to our basis of

reference
{

T⊥
1,2,N2 × T⊥

1,2,N2

}
. This way we can write the fundamental relationship between

α1 and α2.

Let us carry out the details of the proof.
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Figure D.3: Spherical coordinates of N2 in the universal frame.

Item 5. Given that the second plane π2 has normal N2(θ2, φ2), we want to intersect it with the

plane spanned by T⊥
1 and N1 (therefore having normal N × T⊥

1 ). The intersection is a line with

unit direction T⊥
1,2 which can be written as

T⊥
1,2 = N2 × (N1 × T⊥

1 ). (D.2.36)

Computing the cross product in universal coordinates, using

N1 × T⊥
1 = (0, 1, 0)>, (D.2.37)

and using D.2.35, we get:

T⊥
1,2 = (cos θ2, 0, − cosφ2 sin θ2)

>
. (D.2.38)

Item 6. The vector v1 can be written as:

v1 = (cosα1, sinα1, 0) (D.2.39)

in the universal coordinate frame. Thus, we want a unit vector v2 representing the direction of

intersection of plane π2 with the plane spanned by e1T 1 and v1. We can write:

v2 = ±N2 × (T 1 × v1) (D.2.40)

where

T 1 = (sin θ1, 0, cos θ1)
>
. (D.2.41)

Computing the cross product T 1 × v1 in the universal coordinates, we have that

T 1 × v1 = (− sinα1 cos θ1, cosα1 cos θ1, sinα1 sin θ1)
>
, (D.2.42)
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and, finally, we can compute the final product:

v2 = N2 × (T 1 × v1) (D.2.43)



cosα1 cos θ1 cos θ2 − sinα1 sinφ2 sin θ1 sin θ2
sinα1 cosφ2 sin θ1 sin θ2 + sinα1 cos θ1 cos θ2

− sinα1 cos θ1 sin θ2 sinφ2 − cosα1 cos θ1 sin θ2 cosφ2


 . (D.2.44)

The equation gives the tangent vector v2 of the second epipolar line in terms of α1, θ1, θ2, φ2. We

can now write the α2 in terms of a reference coordinate frame in the second image plane. We choose

an ordered 3D basis at the second image plane having the vector T⊥
1,2 as the ‘x’-axis:

[
T⊥

1,2 , N2 × T⊥
1,2 , N2

]
: ordered basis of π2. (D.2.45)

This way, we can compute both sinα2 and cosα2 in terms of α1 and the essential parameters

θ1, θ2, φ2 of the system. Assuming that only the slope of the epipolar line is important, but not the

direction, we can try to compute tanα2:

tanα2 =
sinα2

cosα2
=

v2 ·N2 × T⊥
1,2

v2 · T⊥
1,2

. (D.2.46)

Let us compute the consine.

cosα2 = v2 · T⊥
1,2 = v2 · (cos θ2, 0, − cosφ2 sin θ2)

>

cosα2 = cosα1 cos θ1 cos2 θ2 − sinα1 sin θ1 sin θ2 cos θ2 sinφ2

+ sinα1 cos θ1 sin2 θ2 sinφ2 cosφ2 + cosα1 cos θ1 sin2 θ2 cos2 φ2. (D.2.47)

Now, the sine first requires the basis vector N2×T⊥
1,2 to be computed. Using the coordinates of N2

and T⊥
1,2 in the universal frame, we can compute their cross product as:

N2 × T⊥
1,2 = ± (

sin2 θ2 sinφ2 cosφ2, − sin2 θ2 cos2 φ2 − cos2 θ2, sin θ2 cos θ2 sinφ2

)>

= ± (
sin2 θ2 sinφ2 cosφ2, 1− sin2 θ2 sin2 φ2, sin θ2 cos θ2 sinφ2

)>
, (D.2.48)

in the universal frame. We can now compute the sine

sinα2 = v2 ·N2 × T⊥
1,2 (D.2.49)

= (cosα1 cos θ1 cos θ2 − sinα1 sin θ1 sin θ2 sinφ2) (sin2 θ2 sinφ2 cosφ2)

+ (sinα1 sin θ1 sin θ2 cosφ2 + sinα1 cos θ1 cos θ2) (1− sin2 θ2 sin2 φ2)

− (sinα1 cos θ1 sin θ2 sinφ2 − cosα1 cos θ1 sin θ2 cosφ2) (sin θ2 cos θ2 sinφ2).

Note that we can divide both the cosα2 and sinα2 expression above by cosα1 without affecting

their ratio, which is tanα2. This will enable us to express them in terms of tanα1. Let us carry this

idea out for the cosine:



188

cosα2

cosα1
= cos θ1 cos2 θ2 − tanα1 sin θ1 sin θ2 cos θ2 sinφ2 (D.2.50)

+ tanα1 cos θ1 sin2 θ2 sinφ2 cosφ2 (D.2.51)

+ cos θ1 sin2 θ2 cos2 φ2 (D.2.52)

so we can write this in the form:
cosα2

cosα1
:= c̃ tanα1 + d̃, (D.2.53)

where c̃ and d̃ are constants. We can also write the sine in this form by dividing the equation D.2.49

by cosα1 and grouping tanα1 terms, arriving at

sinα2

cosα1
:= ã tanα1 + b̃, (D.2.54)

where ã and b̃ are constants. Thus

tanα2 =
sinα2

cosα2
=
ã tanα1 + b̃

c̃ tanα1 + d̃
, (D.2.55)

which is the epipolar line homography described as a function of four homogeneous parameters

ã, . . . , d̃, which, when scaled by, say, d̃, gives 3 coefficients:

tanα2 =
sinα2

cosα2
=
a tanα1 + b

c tanα1 + 1
, (D.2.56)

with a, b, c functions of the geometric parameters θ1, θ2, φ2. ¥

Work remains to be done on how to incorporate the intrinsic parameters into a similar geometric

analysis.

D.2.3 A Geometric Representation of Epipolar Geometry

As stated in the beginning of this section, we represent the epipolar geometry by two epipoles and

a mapping between corresponding epipolar lines. According to Corolary D.2.4, this mapping can be

symmetrically represented by an alignment hyperbola:

axy + bx+ cy + d = 0, (D.2.57)

where the epipolar lines are represented by x = tanα1 in the first image, and y = tanα2 in the

second image. The problem with this equation is that it requires a parametrization of epipolar lines

which is singular for vertical lines. In practice, this causes spurious solutions for nearly vertical

epipolar lines. One way to fix this is to use an isotropic representation of epipolar lines, namely

a unit vector in the direction of the line. Instead of only the tangent of an angle to represent the

line, we use the sine and cosine. Substituting x = tanα1 = sinα1/ cosα1 and y = sinα2/ cosα2

into D.2.57, and multiplying-out by cosα1 cosα2, we obtain:

a sinα1 sinα1 + b sinα1 cosα2 + c cosα1 sinα2 + d cosα1 cosα2 = 0. (D.2.58)
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When using tan’s, we were parametrizing the epipolar lines by their intersections x and y with

a reference line at unit distance from the epipole, namely the tan axis. The new equation using sin

and cos corresponds to parametrizing the epipolar lines by their intersections with a unit reference

circle around the epipole, namely the trigonometric circle. Conversely, we could have arrived at the

above equation directly from this geometric representation, without starting with the equation for

tan’s.

In a practical implementation, there is use in allowing the reference circles to have arbitrary

radius r1 and r2, which can be adjusted in order to guarantee numerical stability in estimating the

coefficients of the epipolar alignment. The epipolar lines are then represented by tangent vectors

r1(sinα1, cosα1) and r2(sinα2, cosα2), and the alingment equation becomes:

ar1 sinα1r2 sinα1 + br1 sinα1r2 cosα2 + cr1 cosα1r2 sinα2 + dr1 cosα1r2 cosα2 = 0. (D.2.59)

In summary, the advantages of this representation is that it is isotropic and allows more stable

estimation by conveniently choosing r1 and r2. The latter reason will be better understood in the

next section. Our final geometric representation is stated in the following proposition.

Proposition D.2.6. (Euclidean representation of epipolar geometry) The epipolar geometry can be

represented by:

1. Two epipoles e1 and e2 in cartesian image coordinates.

2. Two pencils of epipolar lines as vectors of length r1 in image 1, and r2 in image 2, i.e.,

epipolar lines are represented by their intersections with a circular arc of radius r1 in image

1 and r2 in image 2. These vectors are parametrized by angles α1 and α2, respectively, as:




el1(α1) = r1(cosα1, sinα1) = (c1, s1)

el2(α2) = r2(cosα2, sinα2) = (c2, s2),
(D.2.60)

where ci := ri cosαi and si := ri sinαi.

3. The mapping between the epipolar lines as an alignment hyperbola in polar coordinates:

ar1 sinα1r2 sinα2 + br1 sinα1r2 cosα2 + cr1 cosα1r2 sinα2 +dr1 cosα1r2 cosα2 = 0, (D.2.61)

or [
c2 s2

]> [
d b

c a

][
c1

s1

]
= 0, (D.2.62)

where si := ri sinαi and ci := ri cosαi, i = 1, 2.

D.2.4 Estimating the Epipolar Alignment Curve

The epipolar geometry is determined by seven degrees of freedom: two for each epipole, and three for

the alignment of epipolar lines. Three line correspondences are enough to estimate this alingment,

given the epipoles. If more lines are available, a least squares solution can be obtained. Note,
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however, that this least squares estimation is not guaranteed to be minimizing any sensible cost

function in the original domain of epipolar lines (more on this later in this section). More formally,

let the epipolar geometry be represented as in Proposition D.2.6, namely the epipoles are represented

in cartesian coordinates, and the two pencils of epipolar lines be represented by tangent vectors

el1(α1) = r1(cosα1, sinα1) and el2(α2) = r2(cosα2, sinα2) normalized to lengths r1 and r2 rooted

at the epipoles, for images images 1 and 2, respectively. The lengths r1 and r2 are independent of

the angles α1 and α2. Let us use the short notation si := ri sinαi and ci := ri cosαi, i = 1, 2.

We wish to determine the epipolar alignment given the epipoles and given corresponding epipolar

lines. For each corresponding epipolar line elk1 , el
k
2 , k = 1, . . . ,m, we have one linear homogeneous

equation on the coefficients (a, b, c, d) of the alignment hyperbola:

(sk
1s

k
2)a+ (sk

1c
k
2)b+ (ck1s

k
2)c+ (ck1c

k
2)d = 0. (D.2.63)

Notice that the parameters a, b, c, d can be normalized, so we actually have 3dof to estimate, but

we do normalize them for now. Stacking the m equations, we can write them in matrix form:




s11s
1
2 s11c

1
2 c11s

1
2 c11c

1
2

s21s
2
2 s21c

2
2 c21s

2
2 c21c

2
2

s31s
3
2 s31c

3
2 c31s

3
2 c31c

3
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

sm
1 s

m
2 sm

1 c
m
2 cm1 s

m
2 cm1 c

m
2







a

b

c

d




=




0

0

0
...

0



. (D.2.64)

The above system of equations in h = (a, b, c, d) is traditionally solved by obtaining the null vector of

the data matrix A, subject to some normalization constraint on h, say, ‖h‖ = 1 [69, p.90]. For perfect

measurements, the data matrix has rank 3, and, thus has a 1-dimentional null vector. However, if

the corresponding epipolar lines are innacurate (noisy), then one seeks an approximate solution

that minimizes a suitable cost function. What, then, is a suitable cost function? This depends on

statistical analysis of maximum likelihood estimation, assuming a statistical model for the noise.

However, a simple solution is obtained by minimizing the algebraic norm ‖Ah‖ subject to ‖h‖ = 1,

which is equivalent to finding the minimum of the quotient ‖Ah‖/‖h‖. The solution is the (unit)

eigenvector of A>A with least eigenvalue, or, equivalently, the unit singular vector corresponding

to the smallest singular value of A, which is found using svd. This is actually a basic numerical

algorithm that is used in the literature for estimating all kinds of geometric models, even for less

trivial problems as the fundamental matrix. The general procedure of fitting a set of homogeneous

parameters h minimizing an algebraic residual through svd is called the Direct Linear Transform

algorithm (dlt) in the literature.

It is well-known that the dlt algorithm for fitting models to point correspondences can be

very unstable and coordinate-dependent, and, thus, a normalization of the coordinates has to be

performed prior to solving the linear system in the case of homography estimation and fundamental

matrix estimation [69, 71]. The normalization consists in translating data points such that their

mean is 0 (or centroid is at origin), and the average point has unit coordinates in all directions. The
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resulting algorithm is called the normalized dlt. In [71], Hartley had proved that this transformation

improves the conditioning of the data matrix A (also called the design matrix ). More recent literature

claims that normalization only alleviates the problem of stability, but does not get rid of it [66,146]. It

is standard practice to use the linear solution as initial input to an iterative optimization procedure

that minimizes geometric cost. The geometric cost is the cost giving the maximum likelihood

estimate under assumptions of independent Gaussian noise of equal variance in the data. It is called

geometric since it has meaningful interpretation as Euclidean distances.

In our case, we are fitting a hyperbola to correspondences between epipolar lines. We had

hoped that our geometric representation naturally alleviates this stability problem of the linear

algorithm. However, experiments showed that this is not the case. In these experiments, we were

given the epipoles together with 8 corresponding (noisy) points, and the task was to estimate the best

alignment between epipolar lines. The first attempt was to write 8 equations as in D.2.64, and solve

by minimizing ‖Ah‖ subject to ‖h‖ = 1 using svd. However, for some point configurations, a small

perturbation in the data caused a completely useless epipolar alignment. Our final solution was,

then, to select all subsets of 3 epipolar lines, get the solution as the null vector from the data matrix

A for each of these subsets, and measure the geometric error to all the remaining 5 corresponding

points. The final estimate was, then, the one minimizing geometric error. This really improved the

stability of the problem, and in our Monte Carlo experiments we always obtained reasonable fits.

However, this was time consuming: one has to select all subsets of 3 correspondences out of 8, solve

a linear system for each of them, and measure geometric cost to the remaining correspondences. Our

current alternative method, then, is to use the most widely separated epipolar line correspondences

to estimate the epipolar alignment. This also has given reasonably stable estimates, although not

quite as good as the exhaustive search of all subsets.

A note on the cost function being minimized. Each data point for the least squares

estimation is an epipolar line correspondence. As far as the numerical estimation is concerned,

these data points are nothing but x and y coordinates in a Cartesian system representing samples of

the alignment hyperbola. Even though the Euclidean distance to the alingment hyperbola might be

minimized by hyperbola fitting, this distance does not necessarily reflect a meaningful (i.e. maximum

likelihood) distance between predicted and measured epipolar lines.

The four epipolar line consistency rule

As already mentioned, three line correspondences are enough to estimate the epipolar homography,

given the epipoles. Any extra line can be used for verification.

Proposition D.2.7. (The four epipolar line consistency rule): Consider two images with epipoles

e1 and e2, respectively. Let the epipolar lines be represented by angles αi and βi around epipoles 1

and 2, respectively, their tangents being x = tanαi and y = tanβi. Then, for any four corresponding
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epipolar lines, we have ∣∣∣∣∣∣∣∣∣∣

x1y1 x1 y1 1

x2y2 x2 y2 1

x3y3 x3 y3 1

x4y4 x4 y4 1

∣∣∣∣∣∣∣∣∣∣

= 0. (D.2.65)

That is, the determinant is zero if and only if there is some epipolar geometry consistent with the

four lines.

Proof. From equation (D.2.28), we have:

axiyi + bxi + cyi + d = 0, (D.2.66)

for i = 1, . . . , 4. We can write these equations as:



x1y1 x1 y1

x2y2 x2 y2

x3y3 x3 y3

x4y4 x4 y4






a

b

c


 =




d

d

d

d




(D.2.67)

or 


x1y1 x1 y1 1

x2y2 x2 y2 1

x3y3 x3 y3 1

x4y4 x4 y4 1







a

b

c

d




= 0 (D.2.68)

The above system has non-zero solutions if and only if the 4 × 4 matrix is rank-deficient, i.e., its

determinant is zero. ¥

The four epipolar line consistency rule can be used in an algorithm that estimates epipolar

geometry from point correspondences. Given seven corresponding points and a putative position

for the epipoles, one has 7 corresponding epipolar lines – one for each point correspondence. Every

four lines provide a constraint, and there are four independent constraints given 7 points. Four

constraints of the kind shown proposition D.2.7 can in principle be used to find the epipoles e1 and

e2.

It turns out that the four-line consistency equation expresses nothing more than the invariance

of the cross-ratio under the epipolar transformation.

Corollary D.2.8. The four-line consistency rule means that the cross ratio of four epipolar lines

must be preserved by the epipolar alignment.

The importance of cross ratios in the literature is vast; by studying its properties we can arrive

at better estimation of the epipolar geometry.
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D.2.5 Direct Approach to Solving the Geometric Equations

In this section, we attempt to solve the geometric epipolar equations directly, given corresponding

points. By using the geometric representation where the epipoles and epipolar homography are

explicit, we expect to develop a better approach for epipolar geometry estimation.

Since we are working with two views, the notation can be simplified. Let e = (x, y) be the

epipole in image 1 and ē(x̄, ȳ) the epipole in image 2. Similarly, let p = (ξ, η) and p̄ = (ξ̄, η̄) be

points in images 1 and 2, respectively. The equations of Proposition D.2.6 can be written as:

(p̄− ē)>H(p− e) = 0, (D.2.69)

where

H =

[
a b

c d

]
. (D.2.70)

We wish to solve this equation using 7 point correspondences. One approach to solving this equation

directly is to first use 2 point correspondences to solve for e, then use 4 more to solve for H and,

finally, using 2 correspondences for solving a system of 2 polynomials in ē. This approach has the

advantage that only linear equations have to be solved up to the last two. From [103], we know the

last 2 equations must be two cubics.

Let us carry out this approach. First, rewrite the above equation as

(p̄− ē)>He = (p̄− ē)>Hp, (D.2.71)

and we try to solve for the 2D vector He in terms of the other unknowns H and ē and plug back

into the equation. In other words, we just need to eliminate He using two point correspondences:




(p̄1 − ē)>He = (p̄1 − ē)>Hp1

(p̄2 − ē)>He = (p̄2 − ē)>Hp2,
(D.2.72)

We can now solve for He using Cramer’s rule and substitute back. However, since we will have to

multiply both sides by the denominator given by Cramer’s rule anyways, we can obtain the resulting

equation more directly if we introduce an auxiliary variable w to turn the above inhomogeneous

system in He into a homogeneous one in (wHe, w)>, and then solving for for the null vector using

a simple cross-product operation. Before carrying this out, let us define the Kronecker product of

two vectors as:

v ⊗w := (w1v1, w1v2, w2v1, w2v2)>. (D.2.73)

Using this operator, we can write

v>Hw = (v ⊗w)>h, (D.2.74)

where h = (a, b, c, d)> is the matrix H rewritten as a vector. This way, equation D.2.71 can be

written as:

(p̄− ē)>He = [p⊗ (p̄− ē)]> h, (D.2.75)
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and the system of equations given two points can be written as




(p̄1 − ē)>He = [p1 ⊗ (p̄1 − ē)]> h

(p̄2 − ē)>He = [p2 ⊗ (p̄2 − ē)]> h
(D.2.76)

and we try to solve for He (and eliminate it). We can turn this system into a homogeneous form

by multiplying both sides of the equations by an auxiliary variable w:




(p̄1 − ē)>wHe = [p1 ⊗ (p̄1 − ē)]> hw

(p̄2 − ē)>wHe = [p2 ⊗ (p̄2 − ē)]> hw
(D.2.77)

So that we can write this as
[
(p̄1 − ē)> [p1 ⊗ (p̄1 − ē)]> h

(p̄2 − ē)> [p2 ⊗ (p̄2 − ē)]> h

][
wHe

w

]
= 0 (D.2.78)

This enables us to write the solution as a cross-product, and we conveniently obtain w (which is

arbitrary) such that the equations have no denominator. The solution obtained by conveniently

setting w can be written as:
[
wHe

w

]
=

[
p̄1 − ē

[p1 ⊗ (p̄1 − ē)]> h

]
×

[
p̄2 − ē

[p2 ⊗ (p̄2 − ē)]> h

]
. (D.2.79)

Using determinant notation, this is equivalent to

[
wHe

w

]
=

∣∣∣∣∣∣∣∣

i j k

(p̄1 − ē)> [p1 ⊗ (p̄1 − ē)]> h

(p̄2 − ē)> [p2 ⊗ (p̄2 − ē)]> h

∣∣∣∣∣∣∣∣
(D.2.80)

Therefore, when this is substituted back into D.2.75 (after multiplyging both sides by w), we obtain:

[
(p̄− ē)> | [p⊗ (p̄− ē)]> h

]>
∣∣∣∣∣∣∣∣

i j k

(p̄1 − ē)> [p1 ⊗ (p̄1 − ē)]> h

(p̄2 − ē)> [p2 ⊗ (p̄2 − ē)]> h

∣∣∣∣∣∣∣∣
= 0 (D.2.81)

This is just the scalar triple product, and can be written as a single determinant:
∣∣∣∣∣∣∣∣

(p̄1 − ē)> [p1 ⊗ (p̄1 − ē)]> h

(p̄2 − ē)> [p2 ⊗ (p̄2 − ē)]> h

(p̄i − ē)> [pi ⊗ (p̄i − ē)]> h

∣∣∣∣∣∣∣∣
= 0 (D.2.82)

This equation involving a 3× 3 determinant we call the three point constraint.

We now need to eliminate h from equation D.2.82 using three equations instantiated for i =

3, 4, 5. First, let us rewrite such equation as a linear system form in h. This can be done by

expanding the determinant by the third column, and can be shown to be:

[ ∣∣∣ (p̄2−ē)>

(p̄i−ē)>

∣∣∣ ,−
∣∣∣ (p̄1−ē)>

(p̄i−ē)>

∣∣∣ ,
∣∣∣ (p̄1−ē)>

(p̄2−ē)>

∣∣∣
]



[p1 ⊗ (p̄1 − ē)]>

[p2 ⊗ (p̄2 − ē)]>

[pi ⊗ (p̄i − ē)]>


h = 0 (D.2.83)
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We can obtain an equivalent equation as follows. Let the operator rev(v) = (v2,v1)>, i.e., the

operator which reverses the coordinates. From the expression of the cross product using determi-

nants, we can obtain expressions for w and wHe, which we can plug back into original equation to

obtain:

{(p̄i − ē)> [−rev(p̄2 − ē), rev(p̄1 − ē)] · [p1 ⊗ (p̄1 − ē), p2 ⊗ (p̄2 − ē)]>−
det [p̄1 − ē, p̄2 − ē] [p⊗ (p̄− ē)]>}h = 0.

(D.2.84)

The vector inside curly brackets {} has 4 entries, each one being a cubic polynomial in x̄ and ȳ. We

can write it explicitly as:

Coordinate 1:

x̄2ȳ(2ξ1)+

x̄ȳ(−2ξ1ξ̄1 − ξ1ξ̄i − ξ1ξ̄2 − ξ2ξ̄1 + ξ2ξ̄i − ξiξ̄1 + ξiξ̄2)+

x̄2(ξ1η̄i − ξ1η̄2 + ξ2η̄i − ξ2η̄1 − ξiη̄2 + ξiη̄1)+

x̄(ξ1ξ̄1η̄i + ξ1ξ̄1η̄2 − ξ1ξ̄iη̄2 + ξ1η̄iξ̄2 + ξ2ξ̄2η̄i − ξ2ξ̄2η̄1 − ξ2ξ̄iη̄1 + ξ2η̄iξ̄1 − ξiξ̄2η̄1 + ξiξ̄1η̄2 − ξiξ̄iη̄1 + ξiξ̄iη̄2)+

ȳ(ξ1ξ̄1ξ̄i − ξ1ξ̄1ξ̄2 + ξ2ξ̄2ξ̄1 − ξ2ξ̄2ξ̄i − ξiξ̄iξ̄2 + ξiξ̄iξ̄1)+

1(ξ1ξ̄1ξ̄iη̄2 − ξ1ξ̄1η̄iξ̄2 + ξ2ξ̄2ξ̄iη̄1 − ξ2ξ̄2η̄iξ̄1 − ξiξ̄iξ̄1η̄2 + ξiξ̄iξ̄2η̄1)
(D.2.85)

Coordinate 2:

x̄2ȳ(2η1)+

x̄ȳ(−2η1ξ̄1 − ξ1η̄i − η1ξ̄2 − η2ξ̄1 + η2ξ̄i − ηiη̄1 + ηiη̄2)+

x̄2(η1η̄i − η1η̄2 + η2η̄i − η2η̄1 − ηiη̄2 + ηiη̄1)+

x̄(η1ξ̄1η̄i + η1ξ̄1η̄2 − η1ξ̄iη̄2 + η1η̄iξ̄2 + η2ξ̄2η̄i − η2ξ̄2η̄1 − η2ξ̄iη̄1 + η2η̄1ξ̄2 − ηiξ̄2η̄1 + ηiξ̄1η̄2 − ηiξ̄iη̄1 + ξiξ̄iη̄2)+

ȳ(η1ξ̄1ξ̄i − η1ξ̄1ξ̄2 + η2ξ̄2ξ̄1 − η2ξ̄2ξ̄i − ηiξ̄iξ̄2 + ηiξ̄iξ̄1)+

1(η1ξ̄1ξ̄iη̄2 − η1ξ̄1η̄iξ̄2 + η2ξ̄2ξ̄iη̄1 − η2ξ̄2η̄iξ̄1 − ηiξ̄iξ̄1η̄2 + ηiξ̄iξ̄2η̄1)
(D.2.86)

Coordinate 3:

x̄ȳ2(2ξ1)+

x̄ȳ(−2ξ1η̄1 − ξ1η̄i − ξ1η̄2 − ξ2η̄i + ξ2η̄1 − ξiη̄2 + ξiη̄1)+

ȳ2(−ξ1ξ̄i − ξ1ξ̄2 − ξ2ξ̄1 + ξ2ξ̄i − ξiξ̄1 + ξiξ̄2)+

x̄(ξ1η̄1η̄i + ξ1η̄1η̄2 + ξ2η̄2η̄i − ξ2η̄2η̄1 − ξiη̄iη̄1 + ξiη̄iη̄2)+

ȳ(ξ1η̄1ξ̄1 − ξ1η̄1ξ̄2 − ξ1ξ̄iη̄2 + ξ1η̄iξ̄2 + ξ2η̄2ξ̄1 − ξ2η̄2ξ̄i − ξ2ξ̄iη̄1 + ξ2η̄iξ̄1 − ξiξ̄2η̄1 + ξiξ̄1η̄2 − ξiη̄iξ̄2 + ξiη̄iξ̄1)+

1(ξ1η̄1ξ̄iη̄2 − ξ1η̄1η̄iξ̄2 + ξ2η̄2ξ̄1η̄i − ξ2η̄2η̄iξ̄1 − ξiη̄iξ̄1η̄2 + ξiη̄iξ̄2η̄1)
(D.2.87)
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Coordinate 4:

x̄ȳ2(2η1)+

x̄ȳ(−2η1η̄1 − η1η̄i − η1η̄2 − η2η̄i + η2η̄1 − ηiη̄2 + ηiη̄1)+

ȳ2(−η1ξ̄i − η1ξ̄2 − η2ξ̄1 + η2ξ̄i − ηiξ̄1 + ηiξ̄2)+

x̄(η1η̄1η̄i + η1η̄1η̄2 + η2η̄2η̄i − η2η̄2η̄1 − ηiη̄iη̄1 + ηiη̄iη̄2)+

ȳ(η1η̄1ξ̄1 − η1η̄1ξ̄2 − η1ξ̄iη̄2 + η1η̄iξ̄2 + η2η̄2ξ̄1 − η2η̄2ξ̄i − η2ξ̄iη̄1 + η2η̄iξ̄1 − ηiξ̄2η̄1 + ηiξ̄1η̄2 − ηiη̄iξ̄2 + ηiη̄iξ̄1)+

1(η1η̄1ξ̄iη̄2 − η1η̄1η̄iξ̄2 + η2η̄2ξ̄iη̄1 − η2η̄2η̄iξ̄1 − ηiη̄iξ̄1η̄2 + ηiη̄iξ̄2η̄1)
(D.2.88)

[
x̄2ȳ x̄ȳ2 x̄2 x̄ȳ ȳ2 x̄ ȳ 1

] [
col 1 col 2 col 3 col 4

]
h = 0. (D.2.89)

We must use 3 such equations in order to get rid of h. We will have 3 equations of this form

instantiated for i = 3, 4, 5, which we can solve using wedge product determinant. Plugging back into

the general equation for arbitrary i, we obtain a 4 × 4 determinant equal to zero equation. Each

of the entries in the determinant is a cubic, so, in principle, its the expression will have degree 81.

This, somehow should be equivalent to a cubic if the classic literature is correct.

Let us explicitly write the final system of 2 polynomials in 2 variables ē = x̄, ȳ using determinant

notation:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[ ∣∣∣ (p̄2−ē)>

(p̄3−ē)>

∣∣∣ ,−
∣∣∣ (p̄1−ē)>

(p̄3−ē)>

∣∣∣ ,
∣∣∣ (p̄1−ē)>

(p̄2−ē)>

∣∣∣
] [

p1 ⊗ (p̄1 − ē) p2 ⊗ (p̄2 − ē) p3 ⊗ (p̄3 − ē)
]>

[ ∣∣∣ (p̄2−ē)>

(p̄4−ē)>

∣∣∣ ,−
∣∣∣ (p̄1−ē)>

(p̄4−ē)>

∣∣∣ ,
∣∣∣ (p̄1−ē)>

(p̄2−ē)>

∣∣∣
] [

p1 ⊗ (p̄1 − ē) p2 ⊗ (p̄2 − ē) p4 ⊗ (p̄4 − ē)
]>

[ ∣∣∣ (p̄2−ē)>

(p̄5−ē)>

∣∣∣ ,−
∣∣∣ (p̄1−ē)>

(p̄5−ē)>

∣∣∣ ,
∣∣∣ (p̄1−ē)>

(p̄2−ē)>

∣∣∣
] [

p1 ⊗ (p̄1 − ē) p2 ⊗ (p̄2 − ē) p5 ⊗ (p̄5 − ē)
]>

[ ∣∣∣ (p̄2−ē)>

(p̄i−ē)>

∣∣∣ ,−
∣∣∣ (p̄1−ē)>

(p̄i−ē)>

∣∣∣ ,
∣∣∣ (p̄1−ē)>

(p̄2−ē)>

∣∣∣
] [

p1 ⊗ (p̄1 − ē) p2 ⊗ (p̄2 − ē) pi ⊗ (p̄i − ē)
]>

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(D.2.90)

and our system is written as 2 such equations instantiated to i = 6, 7. How can we reduce (D.2.90)

as a cubic in ē? This is left for future work.

D.3 Qualitative Aspects and Epipolar Ordering

In this section, we propose and explore a new method for computing epipolar geometry that addresses

the issues of traditional approaches listed in the introduction.

D.3.1 Partitioning via Ordering Invariance

The central idea of this section is to qualitatively constrain the epipolar geometry based on the

notion of order. Given point correspondences between two images, if the epipolar lines in image 1 are
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(a) (b)

(c) (d)

Figure D.4: Ordering invariant.
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(a)

(b)

Figure D.5: Polygon partitioning of the space of putative epipoles: (a) restricted to the two
image domains, and (b) restricted to a more extended region of the 2D plane with the true
epipole shown as a small square. Polygons are color-coded to represent distinct equivalence
classes of putative epipoles. Black regions represent impossible solutions violating ordering.
Notice how the true epipole satisfies the ordering represented by the blue polygon.
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ordered in clockwise manner, then the corresponding epipolar lines in image 2 must also be ordered

either clockwise or counterclockwise. Figure D.4(a,b) illustrates this: suppose we order the epipolar

lines through points A, . . . ,D in image 1 in a clockwise fashion; then the corresponding points in

image 2 must also have their respective epipolar lines ordered either clockwise or counterclockwise.

This is related to the following theorem.

Theorem D.3.1. Given point correspondences in two views, then corresponding epipolar lines par-

tition each image points into two sets which are corresponding.

Proof. Corresponding epipolar lines define a 3D epipolar plane. Features in 2D correspond to points

in 3D, which are either above or bellow the given epipolar plane. Similarly, in each image the points

are partitioned in two sets, each on each side of the epipolar lines, and the partitioning is the same

for both images. Since we only used intersection of points in this proof, the theorem is also valid in

the case of uncalibrated cameras looking at the same scene. ¥

We can use this constraint to rule out impossible solutions to epipolar geometry. For a putative

epipole e in the plane of image 1, there might be no epipoles ē in image 2 that preserve the same

ordering of epipolar lines. In this case we can discard any epipolar geometry having the first epipole

at e.

If there happens to be a set of epipoles ē in the plane of image 2 that can preserve the same

ordering of epipolar lines as e for the given point correspondences, then this set can be shown to be

a polygonal region, as illustrated in Figure D.4(c).

There are other epipoles in image 1 that can produce the same clockwise ordering of epipolar

lines as e, and they also form a polygon in image 1. Therefore we have two polygons, one for

each image, of corresponding epipoles that preserve the same ordering, as shown in Figure D.4(d,e).

These corresponding polygons are the equivalence class of the epipoles e, ē, under the equivalence

relation “induces the same ordering” for the given points. We thus rule out any epipolar geometry

having an epipole in one of these polygons but not in the other polygon.

A geometric algorithm can be used to compute the partition of the space of epipoles induced

by such an equivalence relation. Figure D.5 shows one such partition using 7 point correspondences

across two views separated by 30 degrees: (a) Shows two views of 7 points (b) shows the zoomed-

out version of the same views with the ground-truth epipole as a white square. Polygons where

corresponding epipoles can be are shown in random colors. Corresponding polygons have the same

colors. No epipole is allowed to be in the black regions.

The ordering partition greatly reduces the search for epipoles by ruling out major parts of the

4D space of epipoles that violate ordering, the remaining possibilities being partitioned into non-

overlapping polytopes. In other words, we reduced the space of epipoles from 4D combinations to

a finite number of smaller 4D problems for each polygon in correspondence. This is explored in

conjuction with an idea described next in order to further nail down the epipolar geometry.
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D.3.2 Cost Function on Epipoles

Given a set of 4 or more point correspondences, solving epipolar geometry can be formulated as

the search for the optimal position of the epipoles. The optimal solution is the one minimizing a

geometric cost function, such as the sum of distances of point correspondences to the respective

epipolar lines. Such a cost function is known to be have quite intricate patterns, so that iterative

optimization gets trapped in local minima, even when initialized by the 7 or 8 point algorithms [40].

The qualitative partitioning of the space of epipoles greatly reduces the 4D search for epipoles,

generating a number of smaller constrained minimization problems for each of the feasible polygons,

as described next.

D.3.3 Hierarchical Search

Given a polygonal partition of the space of epipoles into equivalence classes, We further rule-out

polygons that are sure not to contain the minimum. This is done inferring properties of the cost

function on the whole polygon, based on the cost of the centroid solution. If the centroid cost is so

high that, for the given size of polygon, all other epipole solutions within the polygon are also bad,

then the whole polygon is discarded. For the remaining polygons, either subdivide and repeat the

process for each polygon, or perform a local optimization if conditions for this are met (such as a

small enough partition).

Currently, the way we perform the local optimization is in an experimental stage. Given epipoles

and three points, we can obtain the epipolar homography using a linear method D.2.4. If we are

working with 7 points, then the geometric cost to the remaining set of points can be used to evaluate

how good a given epipole position is. This can be used to rank-order the polygons though the

geometric cost of placing epipoles at their centroids. For the top 5 polygons, we perform non-linear

optimization of epipole positions minimizing geometric cost using Levenberg-Marquadt. We take

as the final epipole solution the one having smallest geometric cost after this optimization. In

order to optimize within finite polygonal regions, and in order to sensibly compute centroids, we

have explored the use of a spherical representation for each image plane, using either stereographic

projection or gnomonic projections with the center of projection being the camera focal point.

The key to the success of the algorithm resides in the stability of computing the polygonal

partition as demonstrated in the following experiment. We compute the epipolar geometry solely

based on rank-ordering rough solutions consisting of epipoles placed at the centroids of corresponding

polygons, running a non-linear least squares optimization on the top 5, and outputting the solutions

with smallest cost. This is not meant to be a practical method, its purpose is just to illustrate the

stability of the polygons. Figure D.6 shows the best geometric error of the polygonal partition-based

method and the solution from the 8 point algorithm.

D.3.4 Contributions of this Section

The potential contributions and advantages of the ideas presented in this section are:
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Figure D.6: Stability plots. Even a simple solution of epipolar geometry using just the
centroids of our polygons clearly outperforms the 8 point algorithm for medium to large
localization error levels.
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• Computation of epipolar geometry that is more stable than previous methods for high levels

of localization noise.

• Our polygonal partition can be used to prune down the 4D space of epipoles given at least

three points.

• Our method can be used to constrain optimization of epipoles to a bounded region that is

computable by a stable algorithm.

• Our method can be used in a ransac strategy to prune correspondences with less than

the minimum of 7 points (3 or more points). Starting from a ransac search for 3 reliable

correspondences (only 35 runs), our approach allows one to iteratively add another reliable

correspondence until 7 or 8 are reached, or to discard the 3 correspondences if it is not possible

to add a fourth one. This gives increased speed, but without having to search for 7 individually.

It also gives increased robustness: could even add more than 7 points, up to e.g. 15 points so

that the bumps in the cost function are smoothed out.

• Robustness to coordinate changes.

• Directly-interpretable geometric entities, leading to e.g. coordinate invariance.

• The approach might be a starting point for bringing geometric insight and efficient geometric

algorithms to problems in 3D computer vision and geometric fitting. Many problems have

structure similar to epipolar geometry estimation [82, 90]. Insights from computational ge-

ometry and computer graphics have already inspired optimal algorithms in computer vision,

e.g. visual hull construction, optimal exact Euclidean distance transforms based on Voronoi-

diagrams [44], and the construction of 2D and 3D medial axes. Graphics algorithms are

readily available in common graphics apis and many of the computations are performed by

widespread graphics hardware.

D.3.5 Future work

• Extend these ideas to the case of curves.

• Study these ideas for constraining the epipolar geometry for less than 7 points in a ransac

fashion.

• The ideas may have potential for computing other entities in multiple view geometry, such as

trifocal tensor, auto-calibration equations, etc.

• Improve the performance for low levels of noise.

• Explicitly model point localization noise into the polygonal construction.



Bibliography

[1] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz, and Richard Szeliski. Building

Rome in a day. In ICCV ’09: Proceedings of the Twelvth IEEE International Conference on

Computer Vision. IEEE Computer Society, 2009.

[2] S. Alibhai and S. Zucker. Contour-based correspondence for stereo. In Proc. Sixth European

Conf. on Computer Vision, Dublin, Ireland, jun 2000.

[3] R.D. Arnold and T.O. Binford. Geometric constraints in stereo vision. In Proc. SPIE, volume

238–Image Processing for Missile Guidance, pages 281–292, San Diego, CA, 1980.

[4] K. Astrom and A. Heyden. Multilinear constraints in the infinitesimal-time case. In Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages

833–838, San Francisco, California, June 1996. IEEE Computer Society Press.

[5] Kalle Astrom, Roberto Cipolla, and Peter Giblin. Generalised epipolar constraints. Int. J.

Comput. Vision, 33(1):51–72, 1999.

[6] Kalle Astrom and Fredrik Kahl. Motion estimation in image sequences using the deformation

of apparent contours. IEEE Trans. Pattern Anal. Mach. Intell., 21(2):114–127, 1999.

[7] N. Ayache and B. Faverjon. Efficient registration of stereo images by matching graph descrip-

tions of edge segments. International Journal of Computer Vision, 1(2):107–131, 1987.

[8] N. Ayache and L. Lustman. Fast and reliable passive trinocular stereovision. In 1st Interna-

tional Conference on Computer Vision, June 1987.

[9] H. H. Baker and T. O. Binford. Depth from edge and intensity-based stereo. In Proceedings

of 7th International Joint Conferences on Artificial Intelligence, pages 631–636, 1981.

[10] Harry G. Barrow and Jay M. Tenenbaum. Interpreting linedrawings as three-dimensional

surfaces. Artificial Intelligence, 17:75–116, 1981.

[11] B. Bascle and R. Deriche. Stereo matching, reconstruction and refinement of 3D curves using

deformable contours. In Proceedings of the Fourth International Conference on Computer

Vision (Berlin, Germany, May 11–13, 1993), Washington, DC, 1993. IEEE Computer Society

Press.

203



204

[12] L. Baumela, L. Agapito, P. Bustos, and I. Reid. Motion estimation using the differential

epipolar equation. Proceedings of the 15th International Conference on Pattern Recognition,

3:848–851, 2000.
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