An Overview of Multiple View Geometry and Matching

Ricardo Fabbri

LEMS - Brown University

Plan of Presentation

- Motivation and main problems
- Single-view calibration procedures
- Projective reconstruction and calibration
 - Obtaining camera matrices from F
 - Bundle adjustment
- Auto-calibration + Metric reconstruction
- Stereo correspondence literature survey

Main problem 1

Hottest problem in Hartley's Book:

- Given corresponding features across multiple uncalibrated views, guess:
 - Camera motion and internal parameters
 - Metric reconstruction
 - Deal with noise, mismatches, and outliers

Main problem 2

Another hot (and harder) problem

- Determine correspondences between multiple views
 - Views may be totally uncalibrated
 - Or camera structure may be known
 - Fundamental matrix
 - Or even full calibration

using linear methods

2D Projective transforms

Planar Projective transformation

$$\begin{pmatrix} x'_{1} \\ x'_{2} \\ x'_{3} \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \quad \text{or} \quad x' = \mathbf{H} x \\ \text{8DOF}$$

Any invertible linear map on homogeneous coordinates

projectivity=collineation=projective transformation=homography

Groups of transforms

$$\mathbf{x'} = \mathbf{H}_P \mathbf{x} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & \mathbf{v} \end{bmatrix} \mathbf{x} \qquad \mathbf{v} = (v_1, v_2)^{\mathsf{T}}$$

8DOF (computable from 4 point-correspondences)

$$\mathbf{H} = \mathbf{H}_{S}\mathbf{H}_{A}\mathbf{H}_{P} = \begin{bmatrix} s\mathbf{R} & t \\ 0^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{K} & 0 \\ 0^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & 0 \\ \mathbf{v}^{\mathsf{T}} & \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & t \\ \mathbf{v}^{\mathsf{T}} & \mathbf{v} \end{bmatrix}$$

The line at infinity $I_{\!_\infty}$ is a fixed line under a projective transformation H if and only if H is an affinity

$$\mathbf{I} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}$$

Eigenvalues of similarities

The circular points I, J are fixed points under the projective transformation **H** iff **H** is a similarity

Conic dual to circular points

- Conic = 2nd degree homog. eq.
 - 3 x 3 symmetric matrix $x^T C x = 0$
 - Dual conics = line conics: $1^T \mathbf{C}^* \mathbf{1} = \mathbf{0} \quad \mathbf{C}^* = \mathbf{C}^{-1}$
- Conic dual to circular points I, J

$$\mathbf{C}_{\infty}^{*} = \mathbf{I}\mathbf{J}^{\mathsf{T}} + \mathbf{J}\mathbf{I}^{\mathsf{T}}$$

• All lines through I or J.

The dual conic \mathbf{C}_{∞}^{*} is fixed conic under the projective transformation **H** iff **H** is a similarity

Packages both circular points and I_{∞} (null vector)

Conic dual to circular points

- \mathbf{C}^*_{∞} Packs both circular points and \mathbf{I}_{∞} (null vector)
 - Represents information needed for determining structure up to similarity
- Enables measurement of angles

$$\cos \theta = \frac{l^{\mathsf{T}} \mathbf{C}_{\infty}^{*} m}{\sqrt{\left(l^{\mathsf{T}} \mathbf{C}_{\infty}^{*} l\right) \left(m^{\mathsf{T}} \mathbf{C}_{\infty}^{*} m\right)}}$$

 $\mathbf{l}^{\mathsf{T}} \, \mathbf{C}^{*}_{\infty} \, m = 0$ (I and m are orthogonal)

From affinity

From projectivity

3D projective transformation

$\mathbf{X'} = \mathbf{H} \mathbf{X}$

Any invertible 4x4 linear map on homogeneous coordinates

Dual: points \leftrightarrow planes, lines \leftrightarrow lines

3D Projective transforms

3D Projective transforms

The plane at infinity π_{∞} is a fixed plane under a projective transformation H iff H is an affinity

- 1. canical position $\pi_{\infty} = (0,0,0,1)^{\mathsf{T}}$
- 2. contains directions $\mathbf{D} = (X_1, X_2, X_3, 0)^{\mathsf{T}}$
- 3. two planes are parallel \Leftrightarrow line of intersection in π_{∞}
- 4. line // line (or plane) \Leftrightarrow point of intersection in π_{∞}
- 5. Identifying π_{∞} enables removal of projective "distortion"

The Absolute conic

• Ω_{∞} is a conic with matrix I on π_{∞}

Canonical form:

$$\begin{array}{c} X_1^2 + X_2^2 + X_3^2 \\ X_4 \end{array} \bigg\} = 0$$

only imaginary points at infinity (!)

The absolute conic Ω_{∞} is a fixed conic under the projective transformation **H** iff **H** is a similarity

- Encodes 5 DOF of affine transformation
- Identifying it enables removal of affine distortion

•
$$\Omega_{\infty}$$
 enables measuring angles
 $\cos \theta = \frac{\left(d_{1}^{\mathsf{T}}\Omega_{\infty}d_{2}\right)}{\sqrt{\left(d_{1}^{\mathsf{T}}\Omega_{\infty}d_{1}\right)\left(d_{2}^{\mathsf{T}}\Omega_{\infty}d_{2}\right)}}$
• Orthogonality: $d_{1}^{\mathsf{T}}\Omega_{\infty}d_{2} = 0$

The Absolute Dual Quadric

Quadrics

Surfaces in P^3 defined by

 $X^{T}QX = 0$ (Q : 4x4 symmetric matrix)

- 1. 9 DOF (9 points define quadric)
- 2. (plane \cap quadric) = conic
- Dual quadrics
 - Equation on (tangent) planes $\pi^T Q^* \pi = 0$ 1. $Q^* = Q^{-1}$ (non-degenerate)

The Absolute Dual Quadric

- Absolute dual quadric Q^{*}_∞
 - Set of tangent planes to absolute conic
 - Encodes both π_{∞} and Ω_{∞}
 - 8 D.O.F. specifying projective and affine transforms, leaving only similarity

The absolute dual quadric Q^*_{∞} is a fixed quadric under the projective transformation **H** iff **H** is a similarity

Estimation of multiview mappings

- 2D homography
 Given a set of (x_i,x_i'), compute H (x_i'=Hx_i)
- 3D to 2D camera projection
 Given a set of (X_i,x_i), compute P (x_i=PX_i)
- Fundamental matrix Given a set of (x_i,x_i'), compute F (x_i'^TFx_i=0)

- 4 point correspondences determine H
- In practice, there is error, so use many correspondences
- Minimize cost functions
 - Direct Linear Transformation
 - Least-squares (SVD) solution: $Ah \sim 0$
 - Minizes an algebraic residual, can be biased
 - Requires normalization of data
 - Advantage: fast, unique solution
 - Initial solution for iterative methods

Geometric cost function minimization

$$(\hat{\mathbf{H}}, \hat{\mathbf{x}}_i, \hat{\mathbf{x}}_i') = \underset{\mathbf{H}, \hat{\mathbf{x}}_i, \hat{\mathbf{x}}_i'}{\operatorname{subject to}} \sum_i d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2 + d(\mathbf{x}_i', \hat{\mathbf{x}}_i')^2$$
subject to $\hat{\mathbf{x}}_i' = \hat{\mathbf{H}}\hat{\mathbf{x}}_i$

- Use Levenberg-Marquadt iteration in VXL
- DLT as initial solution

Objective

Automatically compute homography between two images <u>Algorithm</u>

(iv) Interest points: Compute interest points in each image

- (v) Putative correspondences: Compute a set of interest point matches based on some similarity measure
- (vi) RANSAC robust estimation: Choose H with most inliers
- (vii) Optimal estimation: re-estimate H from all inliers by minimizing geom. cost function with Levenberg-Marquardt
- (viii)Guided matching: Determine more matches using prediction by computed H
- Optionally iterate last two steps until stability

Interest points (500/image)

Putative correspondences (268)

Outliers (117)

Inliers (151)

Final inliers (262)

Basic camera calibration

$$\mathbf{x} = \mathbf{P}\mathbf{X} \qquad \mathbf{P} = \mathbf{K}\begin{bmatrix}\mathbf{I} & \mathbf{0}\end{bmatrix}\begin{bmatrix}\mathbf{R} & \mathbf{t}\\ \mathbf{0} & \mathbf{1}\end{bmatrix}$$
$$\mathbf{K} = \begin{bmatrix}\alpha_x & s & x_0\\ & \alpha_y & y_0\\ & & \mathbf{1}\end{bmatrix}$$

- 3x4 general homog. matrix, 11 DOF
- Minimum 6 3D to 2D point correspondences
 Ap = 0
- Again, use DLT for minimizing Ap

Basic camera calibration

- Levenberg-Marquadt for minimizing geometric error
 - Assuming high precision in 3D
 - Geometric error:

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2}$$
$$\min_{\mathbf{P}} \sum_{i} d(\mathbf{x}_{i}, \mathbf{P}\mathbf{X}_{i})^{2}$$

Distortion correction...

More about internal calibration

- Image of the absolute conic (IAC)
 - By projecting Ω_{∞} , one arrives at:

•
$$\omega = \left(\mathbf{K}\mathbf{K}^{\mathrm{T}}\right)^{-1} = \mathbf{K}^{-\mathrm{T}}\mathbf{K}^{-1}$$

Its dual (**DIAC**): ω^{*} = κκ^T

Independent of camera position or orientation!

A simple calibration device

- (i) compute H for each square (corners_(0,0),(1,0),(0,1),(1,1))
- (iii) compute the imaged circular points H(1,±i,0)[⊤]
- (iv) fit a conic to 6 circular points
- (v) compute K from ω

(= Zhang's calibration method)

Other constraints on K

- We may combine many different linear constraints on the IAC and then fit the conic and recover K
- Examples of scene constraints:
 - Planar homographies, as just seen
 - Vanishing points corresponding to orthogonal lines
- Examples of internal constraints
 - Zero skew and square pixels
- All these constraints are interpreted as known points lying on the conic or conjugate to it

The fundamental matrix

- F is the unique 3x3 rank 2 matrix that satisfies x'TFx=0 for all x↔x'
- **F** has 7 d.o.f.
 - 3x3-1(homogeneous) 1(rank2)
 - 7-point correspondences minimum
 - Pair of camera matrices determine F uniquely
 - F determines camera matrices up to projective ambiguity

$$\mathbf{P} = [\mathbf{I} \mid \mathbf{0}] \quad \mathbf{P'} = [[\mathbf{e'}]_{\times}\mathbf{F} + \mathbf{e'}\mathbf{v}^{\mathrm{T}} \mid \lambda \mathbf{e'}]$$

epipolar lin

Reconstruction from 2 uncalibrated views

• given $x_i \leftrightarrow x'_i$, compute P,P' and X_i

$$\mathbf{x}_i = \mathbf{P}\mathbf{X}_i \qquad \mathbf{x}'_i = \mathbf{P}\mathbf{X}'_i \qquad \text{for all } i$$

- Without additional information, possible up to projective ambiguity
 - (i) Compute F from correspondences
 - (ii) Compute camera matrices from F
 - (iii) Compute 3D point for each pair of corresponding points (triangulation)

Reconstruction from 2 uncalibrated views

Projective reconstruction from F

Reconstruction from 2 uncalibrated views

Ultimate goal: metric reconstruction

Only similarity ambiguity

Stratified reconstruction

(i) Projective reconstructionHardest (ii) Affine reconstruction(iii) Metric reconstruction

Projective to affine

- Identify π_{∞} (3 points) using additional information
 - Translational camera motion

$$F = [e]_{\times} = [e']_{\times}$$
 $P = [I | 0]$
 $P = [I | e']$

Scene constraints (similar to planar case)

Affine to metric

- Identify absolute conic Ω_∞
 - Then apply 3D "rectification" that maps it to canonical coordinates in Euclidean world,

$$\Omega_{\infty}: X^2 + Y^2 + Z^2 = 0, \text{ on } \pi_{\infty}$$

In practice, just find IAC ω in some image

- Single view constraints as seen before:
 - Planar homographies
 - Vanishing points corresponding to orthogonal lines
 - Zero skew and square pixels

- Multiple view constraints on Ω_{∞}
 - Idea used in auto-calibration
 - Consider same intrinsics/same ω on all cameras
 - Given sufficient images there is in general only one conic that projects to the same ω in all images:

- The absolute conic Ω_{∞}

- Direct metric reconstruction
 - Ground control points (5 or more)

Bundle adjustment

- Given n correspondences across m views
 - Determine camera matrices and refine correspondences
 - minimize reprojection error

$$\min_{\hat{\mathsf{P}}_{k},\hat{\mathsf{M}}_{i}}\sum_{k=1}^{m}\sum_{i=1}^{n}D(\mathsf{m}_{ki},\hat{\mathsf{P}}_{k}\hat{\mathsf{M}}_{i})^{2}$$

- Levenberg-Marquadt
 - Needs specialized implementation (Matt)
- Used to refine reconstructions in many occasions

Bundle adjustment

- To many images or correspondences
 - Strategies so that not all images are optimized simultaneously
 - Partition data, bundle adjust separately, then merge
- Computation of initial structure and motion
 - According to Hartley and Zisserman:
 - "this area is still to some extend a black-art"
 - Correspondences not present in all views
 - Use overlapping subsequences
 - Stitch into final reconstruction
 - Triangulate to transfer correspondences to all views

Auto-Calibration

- Metric reconstruction and intrinsics
- All we need are:
 - correspondences
 - sufficient number of views
 - assumptions on internal calibration or camera motion
- We want to find rectifying 3D homography H
 - H is completely determined by $\Omega_{\scriptscriptstyle \infty}$ and $\pi_{\scriptscriptstyle \infty}$
 - Or absolute dual quadric Q^*_{∞}
 - K of 1st camera and π_{∞} suffices: 8 parameters

Auto-Calibration

- Special imaging conditions that constrains K
 - Camera rotating about center
 - Turntable motion
- Internal constraints
 - Zero skew, fixed focal length, etc
- Strategy based on absolute dual quadric
 - Q^*_{∞} is a fixed quadric under Euclidean transformations
 - DIAC $\omega^{*i} = \mathbf{K}_i \mathbf{K}_i^{T}$ is its image on each view
 - So we have a relation between calibrations on each view

Auto-Calibration

- Old method based on Kruppa equations
 - Constraint based on correspondences of epipolar lines tangent to the IAC
 - Useful when only 2 views available
- Stratified strategy
 - Identify π_{∞} and then K
 - π_{∞} is the hardest part
 - General motion and constant parameters
 - Other ways as seen before
 - Translational motion
 - 3 vanishing points, etc

