An Overview of Multiple View Geometry and Matching

Ricardo Fabbri

LEMS - Brown University

Plan of Presentation

- Motivation and main problems
- Single-view calibration procedures
- Projective reconstruction and calibration
- Obtaining camera matrices from F
- Bundle adjustment
- Auto-calibration + Metric reconstruction
- Stereo correspondence literature survey

Main problem 1

Hottest problem in Hartley's Book:

- Given corresponding features across multiple uncalibrated views, guess:
- Camera motion and internal parameters
- Metric reconstruction
- Deal with noise, mismatches, and outliers

Main problem 2

Another hot (and harder) problem

- Determine correspondences between multiple views
- Views may be totally uncalibrated
- Or camera structure may be known
- Fundamental matrix
- Or even full calibration

Problem solving

Reconstruction Process

Metric reconstruction and intrisic calibration given enough images

Refine reconstruction and camera matrices by non-linear optimization

Gross Projective reconstruction using linear methods

2D Projective transforms

Planar Projective transformation

$$
\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \text { or } \quad \begin{gathered}
\mathrm{x}^{\prime}=\mathbf{H x} \\
8 \mathrm{DOF}
\end{gathered}
$$

Any invertible linear map on homogeneous coordinates
projectivity=collineation=projective transformation=homography

Groups of transforms

$$
\mathrm{x}^{\prime}=\mathbf{H}_{P} \mathrm{x}=\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
\mathrm{v}^{\top} & v
\end{array}\right] \mathrm{x} \quad \mathrm{v}=\left(v_{1}, v_{2}\right)^{\top}
$$

8DOF (computable from 4 point-correspondences)

$$
\mathbf{H}=\mathbf{H}_{S} \mathbf{H}_{A} \mathbf{H}_{P}=\left[\begin{array}{cc}
s \mathbf{R} & \mathrm{t} \\
0^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{K} & 0 \\
0^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & 0 \\
\mathrm{v}^{\top} & v
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & \mathrm{t} \\
\mathrm{v}^{\top} & v
\end{array}\right]
$$

The line at infinity I_{∞} is a fixed line under a projective transformation H if and only if H is an affinity

The circular points

$$
\mathrm{I}=\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right) \quad \mathrm{J}=\left(\begin{array}{c}
1 \\
-i \\
0
\end{array}\right)
$$

Eigenvalues of similarities

The circular points I, J are fixed points under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

Conic dual to circular points

- Conic $=2^{\text {nd }}$ degree homog. eq.
- 3×3 symmetric matrix $x^{\top} \mathbf{C x}=0$
- Dual conics = line conics: $1^{\top} \mathbf{C}^{*} 1=0 \quad \mathbf{C}^{*}=\mathbf{C}^{-1}$
- Conic dual to circular points I, J

$$
\mathbf{C}_{\infty}^{*}=\mathrm{IJ}^{\top}+\mathrm{JI}^{\top}
$$

- All lines through I or J.

The dual conic \mathbf{C}_{∞}^{*} is fixed conic under the projective transformation \mathbf{H} iff H is a similarity

Packages both circular points and I_{∞} (null vector)

Conic dual to circular points

- \mathbf{C}_{∞}^{*} Packs both circular points and I_{∞} (null vector)
- Represents information needed for determining structure up to similarity
- Enables measurement of angles

$$
\cos \theta=\frac{1^{\top} \mathbf{C}_{\infty}^{*} \mathrm{~m}}{\sqrt{\left(\mathrm{l}^{\top} \mathbf{C}_{\infty}^{*} 1\right)\left(\mathrm{m}^{\top} \mathbf{C}_{\infty}^{*} \mathrm{~m}\right)}}
$$

$$
1^{\top} \mathbf{C}_{\infty}^{*} \mathrm{~m}=0 \quad \text { (l and } \mathrm{m} \text { are orthogonal) }
$$

Metric rectification

From affinity

3D Projective transforms

3D projective transformation

$$
X^{\prime}=\mathbf{H X}
$$

Any invertible 4×4 linear map on homogeneous coordinates
Dual: points \leftrightarrow planes, lines \leftrightarrow lines

3D Projective transforms

Projective 15dof

3D Projective transforms

The plane at infinity π_{∞} is a fixed plane under a projective transformation H iff H is an affinity

1. canical position $\pi_{\infty}=(0,0,0,1)^{\top}$
2. contains directions $\mathrm{D}=\left(X_{1}, X_{2}, X_{3}, 0\right)^{\top}$
3. two planes are parallel \Leftrightarrow line of intersection in π_{∞}
4. line // line (or plane) \Leftrightarrow point of intersection in π_{∞}
5. Identifying π_{∞} enables removal of projective "distortion"

The Absolute conic

- Ω_{∞} is a conic with matrix I on π_{∞}

Canonical form: $\left.\begin{array}{c}X_{1}^{2}+X_{2}^{2}+X_{3}^{2} \\ X_{4}\end{array}\right\}=0$
only imaginary points at infinity

The absolute conic Ω_{∞} is a fixed conic under the projective transformation \mathbf{H} iff \mathbf{H} is a similarity

- Encodes 5 DOF of affine transformation
- Identifying it enables removal of affine distortion

The Absolute conic

- Ω_{∞} enables measuring angles

$$
\cos \theta=\frac{\left(\mathrm{d}_{1}^{\top} \Omega_{\infty} \mathrm{d}_{2}\right)}{\sqrt{\left(\mathrm{d}_{1}^{\top} \Omega_{\infty} \mathrm{d}_{1}\right)\left(\mathrm{d}_{2}^{\top} \Omega_{\infty} \mathrm{d}_{2}\right)}}
$$

- Orthogonality:

$$
\mathrm{d}_{1}^{\top} \Omega_{\infty} \mathrm{d}_{2}=0
$$

The Absolute Dual Quadric

- Quadrics

- Surfaces in $P^{\wedge} 3$ defined by

$$
\mathrm{X}^{\top} \mathrm{QX}=0 \quad(\mathrm{Q}: 4 \times 4 \text { symmetric matrix })
$$

1. 9 DOF (9 points define quadric)
2. (plane \cap quadric) $=$ conic

- Dual quadrics
- Equation on (tangent) planes $\pi^{\top} Q^{*} \pi=0$ 1. $\mathrm{Q}^{*}=\mathrm{Q}^{-1} \quad$ (non-degenerate)

The Absolute Dual Quadric

- Absolute dual quadric Q_{∞}^{*}
- Set of tangent planes to absolute conic
- Encodes both π_{∞} and Ω_{∞}
- 8 D.O.F. specifying projective and affine transforms, leaving only similarity

The absolute dual quadric Q_{∞}^{*} is a fixed quadric under the projective transformation \mathbf{H} iff H is a similarity

Estimation of multiview mappings

- 2D homography

Given a set of $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}^{\prime}\right)$, compute $\mathrm{H}\left(\mathrm{x}_{\mathrm{i}}^{\prime}=\mathrm{H} \mathrm{x}_{\mathrm{i}}\right)$

- 3D to 2D camera projection

Given a set of $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right)$, compute $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}=\mathrm{PX} \mathrm{X}_{\mathrm{i}}\right)$

- Fundamental matrix

Given a set of $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}{ }^{\prime}\right)$, compute $\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}{ }^{\top} \mathrm{F}_{\mathrm{i}}=0\right)$

2D Homography estimation

- 4 point correspondences determine H
- In practice, there is error, so use many correspondences
- Minimize cost functions
- Direct Linear Transformation
- Least-squares (SVD) solution: Ah ~ 0
- Minizes an algebraic residual, can be biased
- Requires normalization of data
- Advantage: fast, unique solution
- Initial solution for iterative methods

2D Homography estimation

- Geometric cost function minimization

$$
\begin{gathered}
\left(\hat{\mathrm{H}}, \hat{\mathrm{x}}_{i}, \hat{\mathrm{x}}_{i}^{\prime}\right)=\underset{\substack{\mathrm{H}, \hat{x}_{i}, \hat{x}_{i}^{\prime}}}{\operatorname{subject}} \sum_{i} d\left(\hat{\mathrm{x}}_{i}, \hat{\mathrm{x}}_{i}\right)^{2}+d\left(\mathrm{x}_{i}^{\prime}, \hat{\mathrm{x}}_{i}^{\prime}\right)^{2} \\
\text { Hut } \hat{\mathrm{x}}_{i}
\end{gathered}
$$

- Use Levenberg-Marquadt iteration in VXL
- DLT as initial solution

2D Homography estimation

Objective
Automatically compute homography between two images
Algorithm
(iv) Interest points: Compute interest points in each image
(v) Putative correspondences: Compute a set of interest point matches based on some similarity measure
(vi) RANSAC robust estimation:Choose H with most inliers
(vii) Optimal estimation: re-estimate H from all inliers by minimizing geom. cost function with Levenberg-Marquardt
(viii) Guided matching: Determine more matches using prediction by computed H
Optionally iterate last two steps until stability

2D Homography estimation

Interest points
(500/image)

Putative
correspondences (268)

Outliers (117)

Inliers (151)

Final inliers (262)

Basic camera calibration

$$
\begin{array}{rlrl}
\mathbf{x}=\mathrm{PX} & \mathrm{P} & =\mathrm{K}[\mathrm{I} \mid 0]\left[\begin{array}{ll}
\mathrm{R} & \mathrm{t} \\
0 & 1
\end{array}\right] \\
& \mathrm{K}=\left[\begin{array}{lll}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right]
\end{array}
$$

- 3x4 general homog. matrix, 11 DOF
- Minimum 6 3D to 2D point correspondences

$$
\mathrm{Ap}=0
$$

- Again, use DLT for minimizing |Ap

Basic camera calibration

- Levenberg-Marquadt for minimizing geometric error
- Assuming high precision in 3D
- Geometric error:

$$
\begin{gathered}
\sum_{i} d\left(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}\right)^{2} \\
\min _{\mathrm{P}} \sum_{i} d\left(\mathbf{x}_{i}, \mathrm{P} \mathbf{X}_{i}\right)^{2}
\end{gathered}
$$

- Distortion correction...

More about internal calibration

- Image of the absolute conic (IAC)
- By projecting Ω_{∞}, one arrives at:
- $\omega=\left(K^{T}\right)^{-1}=K^{-T} K^{-1}$
- Its dual (DIAC): $\omega^{*}=\mathbf{K K}^{\top}$
- Independent of camera position or orientation!

$$
\cos \theta=\frac{\mathrm{x}_{1}^{\mathrm{T}} \omega \mathrm{x}_{2}}{\sqrt{\left(\mathrm{x}_{1}^{\mathrm{T}} \omega \mathrm{x}_{1}\right)\left(\mathrm{x}_{2}^{\mathrm{T}} \omega \mathrm{x}_{2}\right)}}
$$

A simple calibration device

(i) compute H for each square (corners. (0,0),(1,0),(0,1),(1,1))
(iii) compute the imaged circular points $\mathrm{H}(1, \pm \mathrm{i}, 0)^{\top}$
(iv) fit a conic to 6 circular points
(v) compute K from ω
(= Zhang's calibration method)

Other constraints on K

- We may combine many different linear constraints on the IAC and then fit the conic and recover K
- Examples of scene constraints:
- Planar homographies, as just seen
- Vanishing points corresponding to orthogonal lines
- Examples of internal constraints
- Zero skew and square pixels
- All these constraints are interpreted as known points lying on the conic or conjugate to it

The fundamental matrix

- F is the unique $3 x 3$ rank 2 matrix that satisfies $x^{\prime \top} F x=0$ for all $\mathrm{x} \leftrightarrow \mathrm{x}^{\prime}$
- F has 7 d.o.f.
- 3x3-1 (homogeneous) - 1 (rank2)
- 7-point correspondences minimum

- Pair of camera matrices determine F uniquely
- F determines camera matrices up to projective ambiguity

$$
\mathrm{P}=[\mathrm{I} \mid 0] \quad \mathrm{P}^{\prime}=\left[\left[\mathrm{e}^{\prime}\right]_{x} \mathrm{~F}+\mathrm{e}^{\prime} \mathrm{v}^{\mathrm{T}} \mid \lambda \mathrm{e}^{\prime}\right]
$$

Reconstruction from
 2 uncalibrated views

- given $X_{i} \leftrightarrow x_{i}^{i}$, compute $P, P^{‘}$ and X_{i}

$$
\mathrm{x}_{i}=\mathrm{PX} \quad \mathrm{x}_{i}^{\prime}=\mathrm{PX}_{i}^{\prime} \quad \text { for all } i
$$

- Without additional information, possible up to projective ambiguity
(i) Compute F from correspondences
(ii) Compute camera matrices from F
(iii) Compute 3D point for each pair of corresponding points (triangulation)

Reconstruction from

2 uncalibrated views

- Projective reconstruction from F

Reconstruction from
 2 uncalibrated views

- Ultimate goal: metric reconstruction
- Only similarity ambiguity

Stratified reconstruction

(i) Projective reconstruction

Hardest (ii) Affine reconstruction
(iii)Metric reconstruction

Projective to affine

- Identify π_{∞} (3 points) using additional information
- Translational camera motion

$$
\begin{aligned}
\mathrm{F}=[\mathrm{e}]_{\mathrm{x}}=\left[\mathrm{e}^{\prime}\right]_{\times} & \mathrm{P}=[\mathrm{I} \mid 0] \\
& \mathrm{P}=\left[\mathrm{I} \mid \mathrm{e}^{\prime}\right]
\end{aligned}
$$

- Scene constraints (similar to planar case)

Affine to metric

- Identify absolute conic Ω_{∞}
- Then apply 3D "rectification" that maps it to canonical coordinates in Euclidean world,
- $\quad \Omega_{\infty}: X^{2}+Y^{2}+Z^{2}=0$, on π_{∞}
- In practice, just find IAC ω in some image
- Single view constraints as seen before:
- Planar homographies
- Vanishing points corresponding to orthogonal lines
- Zero skew and square pixels

Affine to metric

- Multiple view constraints on Ω_{∞}
- Idea used in auto-calibration
- Consider same intrinsics/same ω on all cameras
- Given sufficient images there is in general only one conic that projects to the same ω in all images:
- The absolute conic Ω_{∞}
- Direct metric reconstruction
- Ground control points (5 or more)

Bundle adjustment

- Given n correspondences across m views
- Determine camera matrices and refine correspondences
- minimize reprojection error

$$
\min _{\hat{P}_{k}, \hat{M}_{i}} \sum_{k=1}^{m} \sum_{i=1}^{n} D\left(\mathrm{~m}_{\mathrm{kk}}, \hat{P}_{k} \hat{\mathrm{M}}_{i}\right)^{2}
$$

- Levenberg-Marquadt
- Needs specialized implementation (Matt)
- Used to refine reconstructions in many occasions

Bundle adjustment

- To many images or correspondences
- Strategies so that not all images are optimized simultaneously
- Partition data, bundle adjust separately, then merge
- Computation of initial structure and motion
- According to Hartley and Zisserman:
- "this area is still to some extend a black-art"
- Correspondences not present in all views
- Use overlapping subsequences

Stitch into final reconstruction

- Triangulate to transfer correspondences to all views

Auto-Calibration

- Metric reconstruction and intrinsics
- All we need are:
- correspondences
- sufficient number of views
- assumptions on internal calibration or camera motion
- We want to find rectifying 3D homography H
- H is completely determined by Ω_{∞} and π_{∞}
- Or absolute dual quadric Q_{∞}^{*}
- K of $1^{\text {st }}$ camera and π_{∞} suffices: 8 parameters

Auto-Calibration

- Special imaging conditions that constrains K
- Camera rotating about center
- Turntable motion
- Internal constraints
- Zero skew, fixed focal length, etc
- Strategy based on absolute dual quadric
- Q^{*} is a fixed quadric under Euclidean transformations
- DIAC $\omega^{* 1}=K_{i} K_{1}^{\top}$ is its image on each view
- So we have a relation between calibrations on each view

Auto-Calibration

- Old method based on Kruppa equations
- Constraint based on correspondences of epipolar lines tangent to the IAC
- Useful when only 2 views available
- Stratified strategy
- Identify π_{∞} and then K
- π_{∞} is the hardest part
- General motion and constant parameters
- Other ways as seen before
- Translational motion
- 3 vanishing points, etc

\perp Auto-Calibration

Man

