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Abstract

Interest point-based multiview 3D reconstruction and cal-
ibration methods have been very successful in select appli-
cations but are not applicable when an abundance of feature
points are not available. They also lead to an unorganized
point cloud reconstruction where the geometry of the scene is
not explicit. The multiview stereo methods on the other hand
yield dense surface geometry but require a highly controlled
or calibrated setting. We propose and develop a novel frame-
work for 3D reconstruction and calibration based on image
curve content, whose output is a 3D curve sketch, an unor-
ganized set of 3D curve fragments. This approach, which is
meant to augment the previous approaches, results in a re-
construction of geometric curve structure which can serve
as a scaffold on which surface patches can be potentially re-
constructed. It is intented for the setting where a number
of images are available with coarsely calibrated cameras.
The approach operates in two stages. A reliable partial 3D
curve sketch is first reconstructed and this is used to refine
the cameras to yield a more complete 3D curve sketch in a
second stage. A key advantage of this approach is the ability
to integrate information across a large number of views. The
results have been evaluated on a few datasets.

1. Introduction
The 3D reconstruction of scenes from images taken from

multiple cameras and the calibration of these cameras are

fundamental problems in Computer Vision. The state-of-

the-art approaches to these problems either find correspon-

dences among isolated interest points which give a 3D point

cloud reconstruction of the scene, or are intensity-based mul-
tiview stereo methods, which give detailed mesh reconstruc-

tions of simple objects but use controlled acquisition. These

approaches have been successful for select domains of ap-

plication, resulting in autocalibration and useful 3D recon-

structions. However, their requirements/assumptions are not

applicable in general, motivating a novel approach based on

image curve content to complement existing approaches.

The application of interest-point-based methods have

been successful in scenes with texture-rich images, such as

Figure 1: The 3D reconstuction as a 3D curve sketch (left) gives

explicit geometry in contrast to the 3D cloud of point reconstruc-

tion. See supplementary data for 3D results.

in Phototourism [21, 1]. Despite their success, these meth-

ods are not applicable in general settings. First, they assume

an abundance of interest points per independently moving

object, possibly only with a fair degree of texture in pro-

jected images. Such a rich texture is not always available

in scenes with homogeneous regions, e.g., some man-made

environments, or when objects project to a small number of

pixels, relative to the basis of computation of interest points.

In these cases, there may be sufficient image curve geometry,

however, to reconstruct the scene and recover the cameras.

Second, the stability of interest points is significantly re-

duced as the baseline exceeds 30◦ [20], so these methods

are fundamentally restricted to a limited range of baselines.

In contrast, certain curve features, such as sharp ridges on a

building, persist over a much greater range of views. Third,

reconstruction using interest points results in an unorganized

cloud of 3D points where the geometric structure of the un-

derlying curves and surfaces is not explicit. This is not much

of a problem if the focus is on calibrating the viewpoints as in

Phototourism [1]. However, when the 3D object geometry is

required, such as in modeling for architecture, archaeology,

entertainemnt, object recognition, and robotic manipulation,

it would be useful to augment the output with an explicit ge-

ometric structure such as a 3D curve sketch.

The second category of 3D reconstruction techniques,

multi-view stereo methods, produce detailed 3D recon-

structions of objects imaged under controlled conditions by a

large number of precisely calibrated cameras [9, 12, 15, 11]



(see [26] for a review). However, they cannot handle general

scenes, since most approaches are specific to a single object

or to a specific type of object, such as buildings. In addition,

they often require accurate camera calibration, operate under

controlled acquisition, and are often initialized by the visual

hull of the object or a bounded 3D voxel volume.

The goal of this paper is to augment current multiview re-

construction and calibration technology by developing a gen-

erally applicable framework based on image curves when a

large number of views are available, e.g., a video sequence.

Image curve fragments are attractive because they have good

localization, they have greater invariance than interest points

to changes in illumination, are stable over a greater range of

baselines, and are typically denser than interest points. Fur-

thermore, the reflectance or ridge curves provide boundary

condition for surface reconstruction, while occluding con-

tour variations across views indicate surface properties [5].

The notion that image curves contain much of the image

information can be supported by a recent study [6] which

found that generally subjects are able to judge 3D surface

normals of an object depicted by a line-drawing almost as

accurately as for objects depicted by a shaded image.

However, two fundamental obstacles must be surmounted

before image curve fragments can be used in 3D reconstruc-

tion and camera calibration. First, given a pair of image

curve fragments, each from a different view, there is an am-

biguity in intra-curve correspondence, i.e., given a point on

curve one, it is not clear which point on curve two it corre-

sponds to, Figure 2(a). This is not the case when matching

two isolated feature points. Second, the linking of edges into

curve fragments is not stable across views, even for slight

baseline differences, Figure 2(b), resulting in multiple tran-

sitions as the view changes [16].

Figure 2: Challenges in using curve fragments in multiview ge-

ometry: (a) point correspondence ambiguity along the curve, (b)

instabilities with slight changes in viewpoint.

Previous curve-based methods have circumvented prob-

lems in various ways. First, the use of general but closed
curves resolves the curve transition issue [22, 3], but requires

the successful segmentation of images which is unlikely.

Second, the use of algebraic curves resolves the transition

issue with low-order models based on extrinsic polynomial

equations such as conics [8, 17], quadrics [23, 29], and

higher order algebraic curves [18]. However, algebraic curve

geometry is restrictive, limiting their application to general

scenery. Third, silhouettes and visual hulls have been suc-

cessfully used in several aproaches [15, 14, 10, 19, 4, 7], but

require a highly controlled acquisition for their extraction,

and work only for one object per scene. Fourth, straight lines

are a simple, compact and distinctive geometric representa-

tion to be used in generating model hypotheses and detecting

objects for man-made environments. However, this approach

severely restricts the application domain by not allowing for

curved structures. Finally, current multiview methods based

on general curves require highly accurate calibration, which

is not easily available in general.

Overview of our approach: Figure 3 illustrates our ap-

proach. We assume a large number of views are available,

N ≥ 6, e.g., from video or from multiple cameras moni-

toring a scene. The cameras have been coarsely calibrated,

typically with 2 − 5 pixel error. The goal is to produce

a dense collection of unorganized 3D curve fragments, or

the 3D curve sketch, which reflect the underlying geome-

try arising from a combination of 3D surface geometry and

viewing/illumination arrangements, i.e., occluding contours,

reflectance contours (albedo discontinuity), shadow curves,

shade curves, ridges, etc. We also use this reconstruction

to refine the cameras so that a better and denser 3D curve

sketch can be obtained, and so that a better distinction can be

made between occluding contours and view-stationary con-

tours such as reflectance curves and ridges.

Our approach is divided into two stages. In the first stage,

where cameras are calibrated coarsely, the goal is to recon-

struct a partial, but reliable core 3D curve sketch to be used

in the second stage for refining calibration and for obtain-

ing a more complete 3D curve sketch. We form a 3D curve

fragment hypothesis by pairing two long curve fragments,

each from a different view, with sufficient epipolar overlap.

We call the two views from which a curve pair hypothesis

is formed as the hypothesis views. These views rotate in

the reconstruction process among available view pairs. Each

curve pair hypothesis is reprojected onto a set of other views,

the confirmation views, and rated for consistency with the

image and curve differential geometry. Our approach can be

thought of as an automated version of the curve-based CAD

system from [28]. Those hypotheses with enough evidence

in confirmation views are then reconstructed to form the ini-

tial core 3D curve sketch, as discussed in Section 2.

The core 3D curve sketch enables a curve-based measure-

ment of calibration accuracy, by summing up the distances

between reprojected curves and supporting image curves.

This allows for a refinement of cameras through bundle ad-

justment, resulting in subpixel calibration errors. The re-

fined cameras in turn allow for additional sensitivity so that

smaller curve fragment pair hypotheses can be confirmed or

discarded. This is discussed in Section 3. Section 4 discusses

the details of our implementation and Section 5 evaluates the

approach on several datasets. Figure 1 highlights the results.

2. Curve-based Multiview Stereo
Our approach is based on reasoning with image curve

fragments obtained from a large number of views. We denote



Figure 3: A schematic overview of our approach: The input to our system is (i) a set of N images taken of the scene where N is at least 6 but

typically larger, and (ii) a set of N coarsely calibrated cameras, one for each view: the system pairs a curve fragment from one view with one

from another view (hypothesis views) to form a hypothesis which is verified or discarded based on the edge map of other views (confirmation

views). Once a set of reliable curve fragment hypotheses are formed, curve-based bundle adjustment is used to refine the cameras and the

process is repeated. The output of our system is a set of 3D curve fragments (the 3D curve sketch) and refined cameras.

image curve fragments by γv
i , where v indexes into views,

v = 1, . . . , N , and i enumerates the image curves within

frame v, i = 1, . . . ,Mv . The goal is to produce a set of

3D curve fragments {Γ1,Γ2, . . . ,ΓK}, supported by suffi-

cient evidence from the image curve fragments. A putatively

corresponding set of image curve fragments {γ1
i1
, . . . ,γn

in
}

from n views can arise from a single 3D curve Γk, e.g.,

from sharp ridges, reflectance curves, shadows and shades,

which we refer to as view-stationary curves. Alternatively, a

set of image curve fragments can be apparent contours aris-

ing from occluding contours on a surface, which we refer to

as view-nonstationary curves. In practice, except for low-
curvature surfaces, the set of occluding contours cluster in

3D, approximating a single 3D curve. In the first stage of our

reconstruction where the calibration errors are high, view-

stationary and some view-nonstationary curves are consid-

ered together, but they are differentiated in the second stage

up to the accuracy of the refined calibration.

Hypothesis formation. The search for a potentially corre-

sponding set of curve fragments wk = {γ1
i1
,γ2

i2
, . . .γn

in
}

can be computationally overwhelming due to the combina-

torics. However, observe that a set of corresponding curves

arising from a single 3D curve Γk can be delineated by any
pair in the set. Thus, the 3D curve fragment reconstruction

can be reduced to forming corresponding pairs of curves and

removing redundancy among pairs that agree. Since it is not

known in advance which pair of curve fragments correspond,

we must consider all pairs which can potentially arise from

a single 3D curve, i.e., those with common epipolar overlap.

Definition 1. Two curve fragments form a curve fragment
pair hypothesis if a common portion of each arise from a

common 3D curve fragment, Figure 4

In the first stage, only sufficiently long curve fragments

(typically l > τl = 40 pixels for HD video) are considered,

since they are reliable indicators of image structure. This is

relaxed for the subsequent stages when a more precise cali-

bration is available. The goal in the initial stage is to produce

(a) (b)

Figure 4: (a) The epipolar set of lines spanned by points along

the curve fragment γ1
1 in view 1 delineates the region where po-

tentially corresponding curves can be in view 2, ruling out many

curves, e.g., γ2
3, which fall outside this region, and selecting those

with minimal epipolar overlap (τe = 5 pixels), e.g., γ2
1 but not γ2

2.

(b) We avoid multiple intersection with epipolar lines by breaking

curve fragments at epipolar tangencies.

a core set of reliable curves Γk which can be used to boot-

strap for a better calibration. Since long curves typically un-

dergo a wide range of transitions with view changes, we only

insist on a sufficient epipolar overlap (τe = 5 pixels). Mul-

tiple curve intersections are handled by breaking all curve

fragments at epipolar tangencies, Figure 4(b), and keeping

the ones with length greater than τl. The result is a set of

curve fragment pair hypotheses W = {wk, k = 1, . . . ,K}
collected from pairs of hypothesis views, Figure 7.

Hypothesis test and confirmation: Observe that due to

potential partial occlusion, a reprojection of Γk cannot be

expected to be confirmed on each view. Rather, confirma-

tion by a few views, even by one view if the evidence is

strong enough, should be sufficient. However, failing a pres-

ence in all other views implies that the curve fragment pair

hypothesis is invalid.

Specifically, without loss of generality, renumber the hy-

pothesis views as views 1 and 2, and renumber the curve

fragment pair hypothesis under consideration as wk =
(γ1

1,γ
2
1) only, for the purpose of this discussion. The curve

fragment pair corresponds to a 3D curve fragment Γk which

projects to an image curve fragment γk,v in each view v. We

could potentially seek confirmation for γk,v by matching it

to the curve fragments in view v {γv
1,γ

v
2, . . . ,γ

v
nv
}. How-



ever, this would expose us to the frailty of the edge group-

ing process, since the matching curve fragment may exist in

the form of several subfragments, e.g., Figure 2(b). On the

other hand, while relying on edges has the advantage of lo-

calized support without errors from grouping transitions, use

of edges location to clutter is not sufficiently selective in its

support of curve hypotheses.

We select a middle-ground using curvelets [27], local

groupings of a few edges (say 5-10). The curve transition

of Figure 2(b) affect these curvelets as well, but only very

few in many are affected. In addition, the grouping process

provides sufficient geometric context to make their support

meaningful. We represent these local groupings as a point-

wise map endowed with tangent and curvature.1 In this pa-

per, we do not use curvature, but we plan to use it in the

future and expect the addition of even a rough form of cur-

vature will be very helpful. Thus, for this paper the curvelets

are reduced to edge location with tangent attributes.

Figure 5: The reprojection of a curve fragment pair (γ1
1,γ

2
1) onto

a third view (blue) can enjoy the support of an existing curve frag-

ment (red) as in (a), but with non-negligible likelihood the transi-

tion of edge grouping process can result in broken curve segments,

missing edges, and false groupings (b). This motivates the use of

a small neighborhood of an edge – not curve fragments – in the

confirmation process.

Formally, define a supporting edge element, Figure 5, as

Definition 2. (Supporting edge) An edge at point p0 with

tangent t0 of an edge map M supports an an image curve

point γ(s) with tangent t(s) when:

⎧⎪⎪⎨
⎪⎪⎩

p0 = argmin
p∈M

d(p,γ(s))

d(p0,γ(s)) < τd

�(t0, t(s)) < τθ,

(1)

(2)

(3)

where d(p,γ(s)) is the Euclidean distance between a point

p and the curve point γ(s).

The use of tangent orientation is significant since a re-

projected curve on clutter would otherwise receive high sup-

port. This is confirmed by our experiments since perfor-

mance drops when τθ is increased. Let the number of sup-

porting edges of a curve point γ(s) in view v be denoted

φ(γ(s)). Then, the total support S a hypothesis wk has from

1Robert and Faugeras [24] (and later Schmid and Zisserman [25] using

the Trifocal tensor) also use differential geometry in a trinocular setting, but

these systems require extremely well-calibrated cameras, are restricted to 3

views, and employ additional heuristic constraints.

view v is

Sv(wk) =
∫ Lv

k

s=0

φ(γk,v(s))ds, (4)

where Lv
k is the length of γk,v . A view that supports a curve

above τv is considered a supporting view. We solicit evi-

dence from more than one confirmation view for each curve

fragment pair hypotheses (γ1
1,γ

2
1),

S(wk) =
N∑
v=3

[Sv(wk) > τv]Sv(wk), (5)

by summing support over all supporting views.

The set of curve fragment pair hypotheses W is now

thresholded for extent of support τt. However, observe that

an image curve fragment γ1
1 may pair with more than one

curve fragment in view 2, due to epipolar ambiguity, e.g.,

(γ1
1,γ

2
1) and (γ1

1,γ
2
2) may be both possible hypotheses, ex-

ceeding a threshold of support, but both cannot simultane-

ously be valid. Thus, we use a greedy assignment to re-

solve conflicts: the curve fragment pair hypotheses are rank-

ordered and iteratively the highest-ranking hypothesis re-

moves all conflicting lower-ranking hypotheses.

It should be emphasized that while this process may lead

to numerous false negatives in forming curve fragment pair

hypotheses (especially in the first stage when the threshold

of support is higher for reliability i.e., a curve fragment in

one view may break up differently in a second view), this is

not a major concern because the set of corresponding curve

fragments {γ1
i1
,γ2

i2
, . . . ,γn

in
} need only be represented by

one curve fragment pair. Thus, if a veridical curve fragment

pair is not selected in hypothesis views 1 and 2, it is likely

to be selected in another pair of hypotheses. In fact, the con-

firmed curve fragment pair hypotheses induces a grouping

on the remaining views. This notion of interacting 3D curve

reconstruction and edge linking is actually a significant de-

parture from purely bottom-up edge linking approaches, but

its development is beyond the scope of this paper.

While ideally the set of curve fragment pair hypotheses

W should be formed from all pairs of hypothesis views and

tested on all the remaining ones, this is not practical when

the number of views is in tens or hundreds, as in a video se-

quence, thus motivating a view selection strategy. On one

hand, reliability of reprojection onto a third view is directly

related to how close the two views are: reprojections from

two views with a small baseline are not stable. On the other

hand, pairs of views with a large baseline may not have many

image curves with a common source due to occlusion. Our

experiments indicate that a baseline of bmin = 40◦ leads

to stability comparable to calibration accuracy. Beyond this

value of baseline, the number of hypothesis views is only

constrained by the extent of computations that can be af-

forded. We select pairs of consecutive views b = 40◦ apart

as hypothesis views. An identical strategy holds for select-

ing confirmation views. The only difference is that in the



confirmation process visibility is more of an issue than re-

construction stability. Thus, the selection follows a smaller

baseline bc = 1/3b, in the vicinity of the hypothesis views

but excluding the selected hypothesis views.

3. Camera Calibration Refinement
The set of validated curve fragment pair hypothesesW

W = {wk = (γv1
i1
,γv2

i2
), k = 1, . . . ,K}, (6)

together with camera parameters for all views

P = (P1, P2, . . . , PN ), reconstruct the 3D curve sketch

{Γ1,Γ2, . . . ,ΓK}. Assuming the set of curve pair cor-

respondences W is correct, the curve-based reprojection

error, i.e., the degree the reprojected Γk, γk,v agrees with

its supporting edges in the edge map Mv defines the quality

of the calibration. Formally, define the reprojection error of

a 3D curve fragment Γk arising from views v1 and v2 as

fk,M(P) =
N∑
v=1

v/∈{v1,v2}

∫ Lu

0

d(γk,v,Mv)ds, (7)

where d(γk,v
0 (s),Mv) is the distance between the point

γu,v
0 (s) and the line containing the closest oriented edge

point in Mv . Note that the closest edge point must satisfy

the distance and orientation thresholds, τd and τθ, as in equa-

tions (2) and (3) respectively; oriented distance takes into

account both distance and orientation and is defined as total

reprojection error from the reliable, core 3D curve sketch as

fW,M(P) =
K∑
k=1

fk,M(P). (8)

We then seek cameras that minimize the error

P̂ = argmin
P

fW(P), (9)

The independence of curve projections from each other and

the limited visibility of a curve across views implies a spar-

sity that allows for a successful implementation of the op-

timization using Levenberg-Marquardt as used in the tradi-

tional bundle adjustment. The total calibration error is re-

duced to subpixel accuracy, as illustrated in Figure 6.

(a) (b)

Figure 6: Example of a projected curve γk,v(red) on edge map

Mv(blue) before calibration refinement (a) and after (b).

4. Implementation
Edge and curve fragment detection: The integration of

curve content over many views when clutter is present re-

lies heavily on the orientation of curve tangents in addition

to curve position. Thus, the edge detector used must yield

very reliable orientation estimages. We use the subpixel edge

map produced by a third-order operator [27], which explic-

itly addresses the orientation reliability, and their symbolic

edge linker which addresses the grouping of edges into curve

fragments. Examples are shown in Figure 7.

Initial calibration. Initial calibration is obtained using tra-

ditional automatic structure from motion techniques [21, 1],

or if that fails, by manually specifying corresponding points

and solving for the cameras. The initial calibration is typi-

cally imprecise (1-6 pixels reprojection error), which we call

“coarse” calibration. We assume intrinsic parameters to be

precisely known, with the imprecision residing on the extrin-

sic parameters. We are also in the process of developing a

curve-based autocalibration system to augment point-based

autocalibration using the ideas presented here.

Epipolar line intersection. The breakup of curve frag-

ments at points of epipolar tangency implies that each seg-

ment can be parametrized by the epipolar angle. This allows

for a rapid test of whether an epipolar line intersects a curve

by simply looking up the two curve boundary epipolar an-

gles. Furthermore, the intersection of an epipolar line and a

given curve is reduced to simply checking which discrete pa-

rameter interval of the curve the epipolar line belongs to. The

removal of points near epipolar tangency by insisting that all

curve tangents have an angle of τα or more (τα = 10◦) also

allows for a stable intersection point computation.

Curve reprojection. The 3D curve fragment Γk is repro-

jected onto view v. We can also use an image to image trans-

fer (e.g. the Trifocal transfer [13]), but we followed the sim-

pler implementation.

The distance d(γk,v,Mv) uses the distance transform of

edge maps, which is precomputed to find the closest edges

to each point of the curve, but then a more accurate subpixel

distance is recomputed for these edges.

5. Experimental Results
The Capitol Building Sequence consists of 500 frames

covering a 90◦ helicopter fly-by from the Rhode Island State

Capitol, using a High-Definition camera (1280 × 720). In-

trinsic parameters were obtained from Matlab Calibration

toolbox. Extrinsic parameters were obtained by manually

marking/tracking 30 corresponding points on every view

they appear in. This data is challenging due to a mix of

curved and linear structures, a complex background, and

structures of various sizes. The Capitol Building High Se-
quence consists of 256 frames coming from a 270◦ heli-

copter fly-by at higher altitude. Data objects of interest ap-

pear in lower resolution than in the regular Capitol sequence,

leading to higher reconstruction errors.

The Downtown Sequence consists of 173 frames cover-

ing a 360◦ helicopter fly-by over downtown Providence, us-

ing a High-Def. camera (1280×720). The sequence was au-



Figure 7: (a) A sample of views from the “Capitol Sequence”; (b) detected subpixel edgels at low gradient threshold; (c) detected subpixel

edgels at a higher gradient threshold used in the confirmation views; (d) curve fragments with length > 40 pixels used in Stage I; (e) fragments

with length > 20 pixels; (f) a selected curve is highlighted in view 1 and the curves in view 2 with sufficient epipolar overlap are marked

in blue. In the next three images the reprojected hypothesis curve pair is shown in cyan, confirmed in (g) but rejected in (h) and (i). The

example in (i) shows the need for orientation in the presence of clutter!

tomatically calibrated using Bundler [1], a SIFT-based struc-

ture from motion program. This data contains correlated

and repeated structures, e.g., a large number of long straight

lines, easily confused with other lines due a to lack shape.

The Dinossaur Sequence from [26] was selected because

it is a standard multiview-stereo dataset used by the com-

puter vision community, even though it is not representative

of the types of general scenery for which our approach can

be most useful. The Cameras sample 363 views at 640×480
on a hemisphere around the object. The data is low resolu-

tion and contains a large number of occluding contours.

Ground truth for the 3D surfaces is only available for

the simplest scenes (e.g. Dino). It is virtually impossible

to get comprehensive ground-truth for the challenging real-

world datasets tested in this paper. Even if such a ground

truth were available, the evaluation of the system as a whole

would confound the performance of the proposed approach

with that of the edge detector and linker. Rather, we focus

instead on evaluating the ability of the system to find the cor-

rect correspondence between curve fragments in two views,

by manually recording the ground-truth correspondence be-

tween two views of each dataset.

A GUI tool was developed for this purpose to insert,

delete, and inspect correpondences between two views. The

views selected for this were such that they had a baseline

near the minimum required for accurate 3D reconstruction

for the given dataset. Curve fragments were detected on each

hypothesis view and broken at epipolar tangencies. The hu-

man operator clicks on each curve fragment in view 1, and

the GUI tool highlights the candidate curves in image 2 hav-

ing epipolar overlap.

The operator is instructed to mark as ground truth corre-

spondents all the curve fragments which come from the same

underlying physical 3D structure, i.e., having subsets coming

from the same 3D positions. If there is any ambiguity in this

selection, the operator is allowed to use every information

possible to try to disambiguate the match: she is allowed to

hypothesize a match in view 2 and the software will display

reprojections for that match in all other confirmation views;

she can also overlay the curve fragments onto the original

images. The user can then gather evidence until the hypoth-

esis is clearly decided. If all fails, the user can request to re-

construct the hypothesis and examine it in 3D; she can also

reconstruct all the unambigous groundtruth marked so far

and examine how well the reconstructed 3D curve hypoth-

esis fits in the context of the already reconstructed ground

truth. This kind of reasoning leaves little doubt as to what the

corresponding curves should be. Ambiguity can still remain,

such as a few very closeby and similarly shaped curves in a

low-spatial frequency section of the image. In such cases,

the user is allowed to mark two alternatives as equally good

matches, but these form a small percentage of the total data.

Positive matches are the pairs (γ1
i ,γ

2
j ) marked by the human

in the ground truth. Conversely, negative matches are all the

pairs not marked in the ground truth.

Results. Figure 8 shows Precision/Recall curves for each

dataset comparing the core 3D curve sketch to the ground

truth. All datasets get 100% precision at 1/3 recall, which

is 40 curves for the Downtown, 65 curves for the Capitol se-



quence, and 30 curves for the Dino sequence. This is already

plenty enough for calibration (much more than the usual

40 corresponding points needed for stable estimation [13]).

Note that these numbers of core reliable curves are much

higher if we pick the right operating point per dataset.

The role of differential geometry, or orientation, in this

paper, is explored by elarging the orientation threshold to

90◦ so that it no longer plays a role. The plots on the right of

Figure 8 show a significant degradation as the role of orien-

tation is reduced. We expect a similar role for curvature.

Figure 9 shows the quality of the core 3D curve sketch

which is obtained by integrating a large number of hypothe-

sis views. This is best viewed in 3D (see supplentary data) to

appreciate the 3D structure presented by the 3D curve sketch.

Observe the potential of this curve sketch as a scaffold on

which surface patches can be constructed.

6. Conclusion

We have presented a novel framework for multiview

reconstruction and calibration refinement based on image

curve content. The approach augments existing interest-

point based and stereo approaches in providing explicit curve

geometry as well in extending applications where the as-

sumption of these methods fail but image curve content is

present. A key capability is integration across many views,

e.g., as in Google’s Street View. The present paper is ex-

pected to form the initial building block in a broader effort

to use image evidence of the explicit geometry of curves

and surfaces and reconstruct these by integrating informa-

tion across many views. The 3D curve sketch presented here,

when enriched by interpolating across epipolar gaps, will

then be the initial scaffold on which surfaces may be con-

structed. The effort is also underway for curve-based auto

calibration based on the ideas presented here.
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[3] R. Berthilsson, K. Åström, and A. Heyden. Reconstruction

of general curves, using factorization and bundle adjustment.

IJCV, 41(3):171–182, 2001.

[4] A. Bottino and A. Laurentini. The visual hull of smooth

curved objects. PAMI, 26(12):1622–1632, 2004.

[5] R. Cipolla and P. Giblin. Visual Motion of Curves and Sur-
faces. Cambridge University Press, 1999.

[6] F. Cole, K. Sanik, D. DeCarlo, A. Finkelstein, T. Funkhouser,

S. Rusinkiewicz, and M. Singh. How well do line drawings

depict shape? In SIGGRAPH, Aug. 2009.

[7] D. Crispell, D. Lanman, P. Sibley, Y. Zhao, and G. Taubin.

Shape from depth discontinuities. LNCS, 5416, 2009.

[8] S. De Ma. Conics-based stereo, motion estimation, and pose

determination. IJCV, 10(1):7–25, 1993.

[9] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-

view stereopsis. In CVPR’07.

[10] Y. Furukawa and J. Ponce. Carved visual hulls for image-

based modeling. IJCV, 81(1):53–67, 2009.

[11] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. Seitz.

Multi-view stereo for community photo collections. In ICCV
’07.

[12] M. Habbecke and L. Kobbelt. A surface-growing approach to

multi-view stereo reconstruction. In CVPR’07.

[13] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.

[14] C. Hernandez, F. Schmitt, and R. Cipolla. Silhouette coher-

ence for camera calibration under circular motion. PAMI,
29(2):343–349. 2007

[15] C. Hernández Esteban and F. Schmitt. Silhouette and stereo

fusion for 3D object modeling. CVIU, 96(3):367–392. 2004

[16] V. Jain, B. B. Kimia, and J. L. Mundy. Segregation of moving

objects using elastic matching. CVIU, 108:230–242. 2007

[17] F. Kahl and A. Heyden. Using conic correspondence in two

images to estimate the epipolar geometry. In ICCV’98, page

761.

[18] J. Y. Kaminski and A. Shashua. Multiple view geometry of

general algebraic curves. IJCV, 56(3):195–219. 2004

[19] S. Liu, K. Kang, J.-P. Tarel, and D. B. Cooper. Free-form

object reconstruction from silhouettes, occluding edges and

texture edges: A unified and robust operator based on duality.

PAMI. 2007.

[20] P. Moreels and P. Perona. Evaluation of features detectors and

descriptors based on 3d objects. IJCV, 73(3):263–284, 2007.

[21] M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cor-

nelis, J. Tops, and R. Koch. Visual modeling with a hand-held

camera. IJCV, 59(3):207–232, 2004.

[22] J. Porrill and S. Pollard. Curve matching and stereo calibra-

tion. IVC, 9(1):45–50, 1991.

[23] L. Reyes and E. Bayro Corrochano. The projective recon-

struction of points, lines, quadrics, plane conics and degener-

ate quadrics using uncalibrated cameras. IVC, 23(8):693–706.

2005.

[24] L. Robert and O. D. Faugeras. Curve-based stereo: figural

continuity and curvature. In CVPR’91.

[25] C. Schmid and A. Zisserman. The geometry and matching of

lines and curves over multiple views. IJCV, 40(3):199–233,

2000.

[26] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.

A comparison and evaluation of multi-view stereo reconstruc-

tion algorithms. In CVPR’06.

[27] A. Tamrakar and B. B. Kimia. No grouping left behind: From

edges to curve fragments. In ICCV ’07.

[28] H. Wu and Y. Yu. Photogrammetric reconstruction of free-

form objects with curvilinear structures. The Visual Com-
puter, 21(4):203–216, 2005.



Figure 8: Precision/Recall curves for the core 3D curve sketch correspondence, obtained by varying the total support score τt. Left: the

optimal evaluation curve shown in red; Right: varying the orientation threshold τθ to demonstrate the usefulness of the differential geometry

constraint. Notice how eliminating orientation (τθ = 90◦) degrades performance. These experiments used disambiguation threshold τr =
1.5, length τl = 40px for the Downtown and Capitol sequences (hi-res), and τl = 20px for the Middlebury Dino sequence (low-res).

Figure 9: The 3D curve sketches for the Dino and Capitol sequences. See supplementary data for 3D results.

[29] H. Zhang, K. Wong, and G. Zhang. Camera calibration from images of spheres. PAMI, 29(3):499–502, 2007.


