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Abstract. This paper considers and solves the problem of estimating camera
pose given a pair of point-tangent correspondences between the 3D scene and
the projected image. The problem arises when considering curve geometry as
the basis of forming correspondences, computation of structure and calibration,
which in its simplest form is a point augmented with the curve tangent. We show
that while the standard resectioning problem is solved with a minimum of three
points given the intrinsic parameters, when points are augmented with tangent
information only two points are required, leading to substantial computational
savings, e.g., when used as a minimal engine within a RANSAC strategy. In ad-
dition, computational algorithms are developed to find a practical and efficient
solution which is shown to effectively recover camera pose using synthetic and
realistic datasets. The resolution of this problem is intended as a basic building
block of future curve-based structure from motion systems, allowing new views
to be incrementally registered to a core set of views for which relative pose has
already been computed.

1 Introduction

A key problem in the reconstruction of structure from multiple views is the determina-
tion of relative pose among cameras as well as the intrinsic parameters for each camera.
The classical method is to rely on a set of corresponding points across views to deter-
mine each camera’s intrinsic parameter matrix Kim as well as the relative pose between
pairs of cameras [11]. The set of corresponding points can be determined using a cali-
bration jig, but, more generally, using isolated keypoints such as Harris corners [10] or
SIFT/HOG [17] features which remain somewhat stable over view and other variations.
As long as there is a sufficient number of keypoints between two views, a random se-
lection of a few feature correspondences using RANSAC [7,11] can be verified by mea-
suring the number of inlier features. This class of isolated feature point-based methods
are currently in popular and successful use through packages such as the Bundler and
used in applications such as Phototourism [1].
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(a) (c)

(b) (d)

Fig. 1. (a) Views with wide baseline separation may not have a sufficient number of interest
points in common, but they often do share common curve structure. (b) There may not always be
sufficient interest points matching across views of homogeneous objects, such as for the sculpture,
but there is sufficient curve structure. (c) Each moving object requires its own set of features, but
they may not be sufficient without a richly textured surface. (d) Non-rigid structures face the same
issue.

Two major drawbacks limit the applicability of automatic methods based on interest
points. First, it is well-known that in practice the correlation of interest points works for
views with a limited baseline, according to some estimates no greater than 30◦ [18],
Figure 1(a). In contrast, certain image curve fragments, e.g., those corresponding to
sharp ridges, reflectance curves, etc, persist stably over a much larger range of views.
Second, the success of interest point-based methods is based on the presence of an
abundance of features so that a sufficient number of them survive the various variations
between views. While this is true in many scenes, as evidenced by the popularity of this
approach, in a non-trivial number of scenes this is not the case, such as (i) Homogeneous
regions, e.g., from man-made objects, corridors, etc., Figure 1(b); (ii) Multiple moving
objects require their own set of features which may not be sufficiently abundant without
sufficient texture, Figure 1(c); (iii) Non-rigid objects require a rich set of features per
roughly non-deforming patch, Figure 1(d). In all these cases, however, there is often
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(a)

Fig. 2. Challenges in using curve fragments in multiview geometry: (a) instabilities
with slight changes in viewpoint, as shown for two views in (b) and zoomed in selec-
tively in (c-h) showing real examples of edge grouping instabilities, such as a curve in
one being broken into two in another view, a curve being linked onto background, a
curve being detected in one view but absent in another, a curve being fragmented into
various pieces at junctions in one view but fully linked in another view, different parts
of a curve being occluded in different views, and a curve undergoing shape deformation
from one view to the other. (i) Point correspondence ambiguity along the curve.

sufficient image curve structure, motivating augmenting the use of interest points by
developing a parallel technology for the use of image curve structure.

The use of image curves in determining camera pose has generally been based on
epipolar tangencies, but these techniques assume that curves are closed or can be de-
scribed as conics or other algebraic curves [14, 15, 19, 21]. The use of image curve
fragments as the basic structure for auto-calibration under general conditions is faced
with two significant challenges. First, current edge linking procedures do not generally
produce curve segments which persist stably across images. Rather, an image curve
fragment in one view may be present in broken form and/or or grouped with other curve
fragments. Thus, while the underlying curve geometry correlates well across views, the
individual curve fragments do not, Figure 2(a-h). Second, even when the image curve
fragments correspond exactly, there is an intra-curve correspondence ambiguity, Fig-
ure 2(i). This ambiguity prevents the use of corresponding curve points to solve for the
unknown pose and intrinsic parameters. Both these challenges motivate the use of small
curve fragments.
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Fig. 3. The problem of finding the camera pose R, T given space curves in a world
coordinate system and their projections in an image coordinate system (left), and an
approach to that consisting of (right) finding the camera pose R, T given 3D point-
tangents (i.e., local curve models) in a world coordinate system and their projections in
an image coordinate system.

The paradigm explored in this paper is that small curve fragments, or equivalently
points augmented with differential-geometric attributes1, can be used as the basic image
structure to correlate across views. The intent is to use curve geometry as a complemen-
tary approach to the use of interest points in cases where these fail or are not available.
The value of curve geometry is in correlating structure across three frames or more since
the correspondence geometry in two views is unconstrained. However, the differential
geometry at two corresponding points in two views reconstruct the differential geome-
try of the space curve they arise from [4] and this constrains the differential geometry
of corresponding curves in a third view.

The fundamental questions underlying the use of points augmented with differential-
geometric attributes are: how many such points are needed, what order of differential
geometry is required, etc. This paper explores the use of first-order differential geome-
try, namely points with tangent attributes, for determining the pose of a single camera
with respect to the coordinates of observed 3D point-tangents. It poses and solves the
following:
Problem: For a camera with known intrinsic parameters, how many corresponding
pairs of point-tangents in space specified in the world coordinates, and point-tangents in
2D specified in the image coordinates, are required to establish the pose of the camera
with respect to the world coordinates, Figure 3.

The solution to the above problem is useful under several scenarios. First, in situa-
tions where many views of the scene are available and there is a reconstruction available
from two views, e.g., as in [5]. In this case a pair of point-tangents in the reconstruction
can be matched under the RANSAC strategy to a pair of point-tangents in the image to
determine camera pose. The advantage as compared to using three points from unorga-
nized point reconstruction and resectioning is that (i) there are fewer edges than surface

1 Previous work in exploring local geometric groupings [22] has shown that tangent and curva-
ture as well as the sign of curvature derivative can be reliably estimated.
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points and (ii) the method uses two rather than three points in RANSAC, requiring about
half the number of runs for the same level of robustness, e.g., 32 runs instead of 70 to
achieve 99.99% probability of not hitting an outlier in at least one run, assuming 50%
outliers (in practical systems it is often necessary to do as many runs as possible, to
maximize robustness). Second, the 3D model of the object may be available from CAD
or other sources, e.g., civilian or military vehicles. In this case a strategy similar to the
first scenario can be used. Third, in stereo video sequences obtained from precisely cal-
ibrated binocular cameras, the reconstruction from one frame of the video can be used
to determine the camera pose in subsequent frames.

In general, this is a basic problem of interest in pose estimation, camera calibration,
triangulation, etc., in computer vision, robotics, computer graphics, photogrammetry
and cartography.

2 Related Work

Previous work generally has relied on the concept of matching epipolar tangencies on
closed curves. Two corresponding points γ1 in image 1 and γ2 in image 2 are related by
γ2>Eγ1 = 0, where E is the well-known essential matrix [16]. This can be extended
to the relationship between the differential geometry of two curves, γ1(s) in the first
view and a curve γ2(s) in a second view, i.e.,

γ1>(s)Eγ2(s) = 0. (2.1)

The tangents t1(s) and t2(s) are related by differentiation

g1(s)t1
>
(s)Eγ2(s) + γ1>(s)Eg2(s)t2(s) = 0, (2.2)

where g1(s) and g2(s) are the respective speeds of parametrization of the curves γ1(s)
and γ2(s). It is then clear that when one of the tangents t1(s) is along the epipolar plane
also, i.e., t1

>
(s)Eγ2(s) = 0 at a point s, then by necessity γ1>(s)Et2(s) = 0. Thus,

epipolar tangency in image 1 implies epipolar tangency in image 2 at the corresponding
point, Figure 4.

Fig. 4. Correspondence of epipolar tangencies used in curve-based camera calibration. An epipolar line on the left, whose
tangency at a curve is marked in a certain color, must correspond to the epipolar line on the right having tangency on the
corresponding curve, marked with the same color. This concept works for both static curves and occluding contours.

The epipolar tangency constraint was first shown in [19] who use linked edges and
a coarse initial estimate E to find a sparse set of epipolar tangencies, including those at
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corners, in each view. They are matched from one view to another manually. This is then
used to refine the estimate E, see Figure 5, by minimizing the residual γ1>(s)Eγ2(s)

Fig. 5. Illustrating the differential update of epipolar tangencies through the use of the
osculating circle or curvature information.

over all matches in an iterative two-step scheme: the corresponding points are kept fixed
and E is optimized in the first step and then E is kept fixed and the points are updated
in a second step using a closed form solution based on an approximation of the curve
as the osculating circle. This approach assumes that closed curves are available.

Kahl and Heyden [14] consider the special case when four corresponding conics are
available in two views, with unknown intrinsic parameters. In this algebraic approach,
each pair of corresponding conics provides a pair of tangencies and therefore two con-
straints. Four pairs of conics are then needed. If the intrinsic parameters are available,
then the absolute conic is known giving two constraints on the epipolar geometry, so
that only 3 conic correspondences are required. This approach is only applied to syn-
thetic data which shows the scheme to be extremely sensitive to even when a large
number of conics (50) is used. Kaminski and Shashua [15] extended this work to gen-
eral algebraic curves viewed in multiple uncalibrated views. Specifically, they extend
Kruppa’s equations to describe the epipolar constraint of two projections of a general
algebraic curve. The drawback of this approach is that algebraic curves are restrictive.

Sinha et. al. [21] consider a special configuration where multiple static cameras
view a moving object with a controlled background. Since the epipolar geometry be-
tween any pair of cameras is fixed, each hypothesized pair of epipoles representing a
point in 4D is then probed for a pair of epipolar tangencies across video frames. Specif-
ically, two pairs of tangencies in one frame in time and a single pair of tangencies in
another frame provide a constraint in that they must all intersect in the same point.
This allows for an estimation of epipolar geometry for each pair of cameras, which
are put together for refinement using bundle adjustment, providing intrinsic parameters
and relative pose. This approach, however, is restrictive in assuming well-segmentable
silhouettes.

We should briefly mention the classic results that only three 2D-3D point corre-
spondences are required to determine camera pose [7], in a procedure known as camera
resectioning in the photogrammetry literature (and by Hartley and Zisserman [11]), also
known as camera calibration when this is used with the purpose of obtaining the in-
trinsic parameter matrix Kim where the camera pose relative to the calibration jig is
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not of interest. This is also related to the perspective n-point problem (PnP) originally
introduced in [7] which can be stated as the recovery of the camera pose from n corre-
sponding 3D-2D point pairs [12] or alternatively of depths [9].
Notation: Consider a sequence of n 3D points (Γw

1 ,Γ
w
2 , . . . ,Γ

w
n ), described in the

world coordinate system and their corresponding projected image points (γ1,γ2, . . . ,γn)
described as points in the 3D camera coordinate system. Let the rotation R and trans-
lation T relate the camera and world coordinate systems through

Γ = RΓw + T , (2.3)

where Γ and Γw are the coordinates of a point in the camera and world coordinate
systems, respectively. Let (ρ1, ρ2, . . . , ρn) be the depth defined by

Γ i = ρiγi, i = 1, . . . , n. (2.4)

In general we assume that each point γi is a sample from an image curve γi(si) which
is the projection of a space curve Γ i(Si), where si and Si are length parameters along
the image and space curves, respectively.

The direct solution to P3P, also known as the triangle pose problem, and given in
1841 [8], equates the sides of the triangle formed by the three points with those of the
vectors in the camera domain, i.e.,

‖ρ1γ1 − ρ2γ2‖2 = ‖Γw
1 − Γw

2 ‖2

‖ρ2γ2 − ρ3γ3‖2 = ‖Γw
2 − Γw

3 ‖2

‖ρ3γ3 − ρ1γ1‖2 = ‖Γw
3 − Γw

1 ‖2
(2.5)

This gives a system of three quadratic equations (conics) in unknowns ρ1, ρ2, and ρ3.
Following traditional methods going back to the German mathematician Grunert in
1841 [8] and later Finsterwalder in 1937 [6], by factoring out one depth, say ρ1, this
can be reduced to a system of two quadratic equations in two unknowns which are
depth ratios ρ2

ρ1
and ρ3

ρ1
. Grunert further reduced this to a single quartic equation and

Finsterwalder proposed an analytic solution.

Case Unknowns Min. # of Point Corresp. Min. # of Pt-Tgt Corresp.

Calibrated (Kim known) Camera pose R,T 3 2 (this paper)

Focal length unknown Pose R, T and f 4 3 (conjecture)

Uncalibrated (Kim unknown) Camera model Kim, R, T 6 4 (conjecture)

Table 1. The number of 3D–2D point correspondences needed to solve for camera pose
and intrinsic parameters.

In general, the camera resectioning problem can be solved using three 3D ↔ 2D
point correspondences when the intrinsic parameters are known, and six points when
the intrinsic parameters are not known. The camera pose can be solved using four
point correspondences when only the focal length is unknown, but all the other in-
trinsic parameters are known [3], Table 1. We now show that when intrinsic parameters
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are known, only a pair of point-tangent correspondences are required to estimate
camera pose. We conjecture that future work will show that 3 and 4 points, respec-
tively, are required for the other two cases, Table 1. This would represent a significant
reduction for a RANSAC-based computation.

3 Determining Camera Pose from a Pair of 3D–2D Point-Tangent
Correspondences

Theorem 1. Given a pair of 3D point-tangents {(Γw
1 ,T

w
1 ), (Γ

w
2 ,T

w
2 )} described in a

world coordinate system and their corresponding perspective projections, the 2D point-
tangents (γ1, t1), (γ2, t2), the pose of the camera R, T relative to the world coordi-
nate system defined by Γ = RΓw+T can be solved up to a finite number of solutions2,
by solving the system{

γ>
1 γ1 ρ

2
1 − 2γ>

1 γ2 ρ1ρ2 + γ>
2 γ2 ρ

2
2 = ‖Γw

1 − Γw
2 ‖2,

Q(ρ1, ρ2) = 0,
(3.1)

where RΓw
1 + T = Γ 1 = ρ1γ1 and RΓw

2 + T = Γ 2 = ρ2γ2, and Q(ρ1, ρ2) is an
eight degree polynomial. This then solves for R and T as

R =
[
(Γw

1 − Γw
2 ) T

w
1 Tw

2

]−1 ·[
ρ1γ1 − ρ2γ2 ρ1

g1
G1

t1 +
ρ′
1

G1
γ1 ρ2

g2
G2

t2 +
ρ′
2

G2
γ2

]
T = ρ1γ1 −RΓw

1 ,

where expressions for four auxiliary variables g1
G1

and g2
G2

, the ratio of speeds in the
image and along the tangents, and ρ1 and ρ2 are available.

Proof. We take the 2D-3D point-tangents as samples along 2D-3D curves, respec-
tively, where the speed of parametrization along the image curves are g1 and g2 and
along the space curves G1 and G2. The proof proceeds by (i) writing the projec-
tion equations for each point and its derivatives in the simplest form involving R,
T , depths ρ1 and ρ2, depth derivatives ρ′1 and ρ′2, and speed of parametrizations G1

and G2, respectively; (ii) eliminating the translation T by subtracting point equations;
(iii) eliminating R using dot products among equations. This gives six equations in
six unknowns: (ρ1, ρ2, ρ1 g1

G1
, ρ2

g2
G2

,
ρ′
1

G1
,
ρ′
2

G2
); (iv) eliminating the unknowns ρ′1 and ρ′2

gives four quadratic equations in four unknowns: (ρ1, ρ2, ρ1 g1
G1

, ρ2
g2
G2

). Three of these
quadratics can be written in the form:

Ax2
1 +Bx1 + C = 0

Ex2
2 + Fx2 +G = 0

H + Jx1 +Kx2 + Lx1x2 = 0,

(3.2)

(3.3)
(3.4)

2 assuming that the intrinsic parameters Kim are known
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where x1 = ρ1
g1
G1

and x2 = ρ2
g2
G2

and where A through L are only functions of the two
unknowns ρ1 and ρ2. Now, Equation 3.4 represents a rectangular hyperbola, Figure 6,
while Equations 3.2 and 3.3 vertical and horizontal lines in the (x1, x2) space. Figure 6
illustrates that only one solution is possible which is then analytically written in terms
of variables A–L (not shown here). This allows an expression for ρ1 g1

G1
and ρ2

g2
G2

in
terms of ρ1 and ρ2 which is a degree 16 polynomial, but this is in fact divisible by
ρ41ρ

4
2, leaving a polynomial Q of degree 8. Furthermore, we find that Q(−ρ1,−ρ2) =

Q(ρ1, ρ2), using the symmetry of the original equations. This, together with the unused
equation (the remaining one of four) gives the system of equations 3.1. Please check

Fig. 6. Diagram of the mutual intersection of Equations 3.2–3.4 in the x1–x2 plane.

the detailed proof in the supplementary material.

Proposition 1. The algebraic solutions to the system (3.1) of Theorem 1 are also re-
quired to satisfy the following inequalities arising from imaging and other requirements
enforced by

ρ1 > 0, ρ2 > 0 (3.5)
g1
G1

> 0,
g2
G2

> 0 (3.6)

det[ρ1γ1 − ρ2γ2 ρ1
g1
G1

t1 +
ρ′1
G1

γ1 ρ2
g2
G2

t2 +
ρ′2
G2

γ2]

det
[
Γw

1 − Γw
2 Tw

1 Tw
2

] > 0. (3.7)

Proof. There are multiple solutions for ρ1 and ρ2 in Equation 3.1. Observe first that if
ρ1, ρ2, R, T are a solution, then so are −ρ1, −ρ2, −R, and −T . Only one of these two
solutions are valid, however, as the camera geometry enforces positive depth, ρ1 > 0
and ρ2 > 0, so that solutions are sought only in the top right quadrant of the ρ1–ρ2
space. In fact, the imaging geometry further restricts the points to lie in front of the
camera.

Second, observe that the matrix R can only be a rotation matrix if it has determinant
+1 and is a reflection rotation matrix if it has determinant −1. Using (3.2), det(R) can
be written as

detR =
det

[
ρ1γ1 − ρ2γ2 ρ1

g1
G1

t1 +
ρ′1
G1

γ1 ρ2
g2
G2

t2 +
ρ′2
G2

γ2

]
det

[
Γw

1 − Γw
2 Tw

1 Tw
2

] .
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Finally, the space curve tangent T and the image curve tangent t must point in the
same direction, i.e., T · t > 0, or, as detailed in the supplementary material, g1

G1
> 0

and g2
G2

> 0.

4 A Practical Approach to Computing a Solution

Equations 3.1 can be viewed as the intersection of two curves in the ρ1−ρ2 space. Since
one of the curves to be intersected is shown to be an ellipse, it is possible to parametrize
it by a bracketed parameter and then look for intersections with the second curve which
is of degree 8. This gives a higher-order polynomial in a single unknown which can be
solved more readily than simultaneously solving the two equations of degree 2 and 8.

Proposition 2. Solutions ρ1 and ρ2 to the quadratic equation in (3.1) can be parametrized
as 

ρ1(t) =
2αt cos θ + β(1− t2) sin θ

1 + t2

ρ2(t) =
−2αt sin θ + β(1− t2) cos θ

1 + t2
,

−1 ≤ t ≤ 1

where

tan(2θ) =
2(1 + γ>

1 γ2)

γ>
1 γ1 − γ>

2 γ2

, 0 ≤ 2θ ≤ π,

and

α =

√
2‖Γw

1 − Γw
2 ‖√

(γ>
1 γ1 + γ>

2 γ2) + (γ>
1 γ1 − γ>

2 γ2) cos(2θ) + 2γ>
1 γ2 sin(2θ)

, α > 0,

β =

√
2‖Γw

1 − Γw
2 ‖√

(γ>
1 γ1 + γ>

2 γ2) − (γ>
1 γ1 − γ>

2 γ2) cos(2θ) − 2γ>
1 γ2 sin(2θ)

, β > 0.

Proof. An ellipse centered at the origin with semi-axes of lengths α > 0 and β > 0 and
parallel to the coordinates x and y can be parametrized as

x =
2t

1 + t2
α, y =

(1− t2)

1 + t2
β, t ∈ (−∞,∞), (4.1)

with ellipse vertices identified at t = −1, 0, 1 and ∞, as shown in Figure 7. For a gen-
eral ellipse centered at the origin, the coordinates must be multiplied with the rotation
matrix for angle θ, obtaining

ρ1 =
2αt cos θ + β(1− t2) sin θ

1 + t2

ρ2 =
−2αt sin θ + β(1− t2) cos θ

1 + t2
.

−1 ≤ t ≤ 1

Figure 7 illustrates this parametrization. Notice that the range of values of t which we
need to consider certainly lies in the interval [−1, 1] and in fact in a smaller interval
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Fig. 7. Diagram illustrating a parametrization of the ellipse by a parameter t.

where ρ1 > 0 and ρ2 > 0. Note that t and −1
t correspond to opposite points on the

ellipse.
The parameters α, β, and θ for the ellipse in (3.1) can then be found by substitution

of ρ1 and ρ2, details of which are found in the supplementary material.

Both equations in (3.1) are symmetric with respect to the origin in the (ρ1, ρ2)-plane
and the curves will intersect in at most 2× 8 = 16 real points, at most 8 of which will
be in the positive quadrant, as we in fact require ρ1 > 0 and ρ2 > 0.

The parametrization of the ellipse given in Proposition 2 allows us to reduce the two
Equations 3.1 to a single polynomial equation in t. Substituting for ρ1, ρ2 in terms of t
into Q = 0 gives an equation in t for which, in fact, all the denominators are (1+ t2)12,
so that these can be cleared leaving a polynomial in Q̃(t) of degree 16. The symmetry
with respect to the origin in the (ρ1, ρ2)-plane becomes, in terms of t, a symmetry with
respect to the substitution t → −1/t, which gives diametrically opposite points of the
ellipse. This implies that Q̃ has the special form

Q̃(t) = q0 + q1t+ q2t
2 + · · ·+ q16t

16, (4.2)

where qi = −q16−i for i odd. At most 8 solutions will lie in the range −1 < t ≤ 1, and
indeed we are only interested in solutions which make ρ1 > 0 and ρ2 > 0.

5 Experiments

We use two sets of experiments to probe camera pose recovery using 2D-3D point-
tangent correspondences. First, we use a set of synthetically generated 3D curves con-
sisting of a variety of curves (helices, parabolas, ellipses, straight lines, and saddle
curves), as shown in Figure 8. Second, we use realistic data.

The synthetic 3D curves of Figure 8 are densely sampled and projected to a single
500 × 400 view, and their location and tangent orientation are perturbed to simulate
measurement noise in the range of 0 − 2 pixels in location and 0 − 10◦ in orientation.
Our expectation in practice using the publically available edge detector [22] is that the
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Fig. 8. Sample views of the synthetic dataset. Real datasets have also been used in our
experiments, reported in further detail in the supplemental material.

edges can be found with subpixel accuracy and edge orientations are accurate to less
than 5◦.

In order to simulate the intended application, pairs of 2D-3D point-tangent cor-
respondences are selected in a RANSAC procedure from among 1000 veridical ones,
to which 50% random spurious correspondences were added. The practical method
discussed in Section 4 is used to determine the pose of the camera (R, T ) inside the
RANSAC loop. Each step takes 90ms in Matlab on a standard 2GHz dual-core laptop.
What is most significant, however, is that only 17 runs are sufficient to get 99% proba-
bility of hitting an outlier-free correspondence pair, or 32 runs for 99.99% probability.
In practice more runs can easily be used depending on computational requirements. To
assess the output of the algorithm, we could have measured the error of the estimated
pose compared to the ground truth pose. However, what is more meaningful is the im-
pact of the measured pose on the measured reprojection error, as commonly used in the
field to validate the output of RANSAC-based estimation. Since this is a controlled exper-
iment, we measure final reprojection error not just to the inlier set, but to the entire pool
of 1000 true correspondences. In practice, a bundle-adjustment would be run to refine
the pose estimate using all inliers, but we chose to report the raw errors without nonlin-
ear least-squares refinement. The distribution of reprojection error is plotted for various
levels of measurement noise, Figure 9. These plots show that the relative camera pose
can be effectively determined for a viable range of measurement errors, specially since
these results are typically optimized in practice through bundle adjustment. Additional
information can be found in the supplemental material.

Second, we use data from a real sequence, the “Capitol sequence”, which is a set
of 256 frames covering a 90◦ helicopter fly-by from the Rhode Island State Capitol,
Figure 2, using a High-Definition camera (1280 × 720). Intrinsic parameters were ini-
tialized using the Matlab Calibration toolbox from J. Bouguet (future extension of this
work would allow for an estimation of intrinsic parameters as well). The camera param-
eters were obtained by running Bundler [1] essentially out-of-the-box, with calibration
accuracy of 1.3px. In this setup, a pair of fully calibrated views are used to reconstruct
a 3D cloud of 30 edges from manual correspondences. Pairs of matches from 3D edges
to observed edges in novel views are used with RANSAC to compute the camera pose
with respect to the frame of the 3D points, and measure reprojection error. One can then
either use multiple pairs or use bundle adjustment to improve the reprojection error re-
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Fig. 9. Distributions of reprojection error for synthetic data without running bundle
adjustment, for increasing levels of positional and tangential perturbation in the mea-
surements. Additional results are reported in the supplemental material.

sulting from our initial computation of relative pose. Figure 10 shows the reprojection
error distribution of our method for a single point-tangent pair after RANSAC, before
and after running bundle-adjustment, versus the dataset camera from bundler (which is
bundle-adjusted), for the Capitol sequence. The proposed approach achieved an average
error of 1.1px and 0.76px before and after a metric bundle adjustment, respectively, as
compared to 1.3px from Bundler. Additional information and results can be found in
the supplemental material.
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Fig. 10. The reprojection error distribution for real data (Capitol sequence) using only
two point-tangents, before and after bundle adjustment. Additional results are re-
ported in the supplemental material.
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6 Future Directions

The paper can be extended to consider the case when intrinsic parameters are unknown.
Table 1 conjectures that four pairs of corresponding 3D-2D point-tangents are suffi-
cient to solve this problem. Also, we have been working on the problem of determining
trinocular relative pose from corresponding point-tangents across 3 views. We conjec-
ture that three triplets of correspondences among the views are sufficient to establish
relative pose. This would allow for a complete curve-based structure from motion sys-
tem starting from a set of images without any initial calibration.
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